
Acquisition and Computation Issues with NIN-AND Tree Models

Yang Xiang
University of Guelph, Canada

Abstract

Most techniques to improve efficiency of conditional probability table (CPT) acquisition
for Bayesian network (BN) can only represent reinforcing causal interactions. The non-
impeding noisy-AND (NIN-AND) tree is the first causal model that explicitly expresses
reinforcement, undermining, and their mixture, while its acquisition is of linear complexity.
We address three issues on acquisition and computation with these models. In particular,
we propose methods to improve computation of conditional probability from a model, to
improve the efficiency of CPT computation from these models, and to address NIN-AND
tree acquisition by elicitation of pairwise causal interactions.

1 Introduction

To acquire a BN, for each non-root node, a CPT
needs to be specified. When the BN is con-
structed along the causal direction, a CPT is
the distribution of an effect conditioned on its
n causes. In general, the complexity of CPT
assessment is exponential on n. A number of
techniques have been proposed to make the as-
sessment more efficient. Noisy-OR (Pearl, 1988)
is the most well known that reduces this com-
plexity to linear. A number of extensions have
also been proposed such as (Heckerman and
Breese, 1996; Galan and Diez, 2000; Lemmer
and Gossink, 2004). However, noisy-OR, noisy-
AND (Galan and Diez, 2000), as well as related
techniques, can only represent causal interac-
tions that are reinforcing (Xiang and Jia, 2007).

The NIN-AND tree (Xiang and Jia, 2007)
is a recently proposed technique for efficiently
modeling and acquiring CPT.1 It inherits the
reinforcing behavior of noisy-OR (Pearl, 1988).
It inherits some features of noisy-AND (Galan
and Diez, 2000) while moves away from its im-
peding behavior (see (Xiang and Jia, 2007)) to
allow modeling of undermining. It also inher-
its the flexibility of recursive noisy-OR (Lem-
mer and Gossink, 2004) to allow probabilities

1Being unaware of this work and its precursor (Xiang
and Jia, 2006), (Maaskant and Druzdzel, 2008) indepen-
dently presented special cases of NIN-AND tree models.

of multi-causal events as input. As the result,
NIN-AND tree provides the first causal model
that explicitly expresses reinforcing and under-
mining causal interactions, as well as their mix-
ture. Its acquisition involves elicitation of prob-
ability parameters whose number is linear on n,
and a tree topology whose size is linear on n.

This paper addresses three technical issues
regarding acquisition of NIN-AND tree models
and computations performed on them. First,
given an NIN-AND tree model for an effect
and some of its present causes, the probability
of the effect can be computed, conditioned on
that these causes are present and the remain-
ing causes are absent . We propose a new algo-
rithm to compute this probability from an NIN-
AND tree model, that improves upon the alter-
native in (Xiang and Jia, 2007). The new al-
gorithm takes advantage of minimal NIN-AND
tree models and enables more efficient CPT
computation.

Second, according to a method in (Xiang and
Jia, 2007), the exponential number of probabil-
ity parameters in a CPT can each be computed
from a suitable NIN-AND tree model. Although
all such models can be obtained by modifying a
common base model, an exponential number of
alternative NIN-AND tree models must be cre-
ated in the process. We propose a new method
that can directly compute all probability pa-
rameters of a CPT from the base model, sav-

ing the computation of creating the exponential
number of NIN-AND trees.

Third, acquisition of the tree topology is a
critical step in specifying an NIN-AND tree
model. Three methods have been proposed: di-
rect specification (Xiang and Jia, 2007), two-
step menu selection (Xiang et al., 2009b), and
identification by pairwise causal interaction (Xi-
ang et al., 2009a). An expert-specified pairwise
causal interaction function may have no corre-
sponding NIN-AND tree model. We propose a
technique to address this issue.

In this paper, we focus on binary effect and
causes. For generalization of NIN-AND tree
models to multi-valued effect and cause vari-
ables, see (Xiang, 2010).

The remainder of the paper is organized as
follows: The background on NIN-AND tree
models is introduced in Section 2. Computa-
tion of conditional probability from an NIN-
AND tree model is addressed in Section 3. The
method for computing CPT without exponen-
tial generation of NIN-AND trees is presented in
Section 4. How to facilitate expert in NIN-AND
tree acquisition by pairwise causal interaction is
described in Section 5.

2 Background
This section is mostly based on (Xiang and Jia,
2007). An uncertain cause is a cause that can
produce an effect but does not always do so.
Denote a binary effect variable by e and a set of
binary cause variables of e by X = {c1, ..., cn}.
Denote e = true by e+ and e = false by e−.
Similarly, for each cause ci, denote ci = true by
c+
i and ci = false by c−i . Denote the set of all

causes (including a leaky cause) of e by C.
A singular causal event refers to an event that

a cause ci caused its effect e to occur successfully
when all other causes of e are absent. Denote
this causal event by e+ ← c+

i and its probability
by P (e+ ← c+

i). The singular causal failure
event, where e is false when ci is true and all
other causes of e are false, is denoted by e+ 6←
c+
i . Denote the multi-causal event that a set

X = {c1, ..., cn} (n > 1) of causes caused e by
e+ ← c+

1 , ..., c+
n or e+ ← x+.

Causes reinforce each other if collectively they
are at least as effective in causing the effect

as some acting by themselves. If collectively
they are less effective, then they undermine each
other. For C = {c1, c2}, if c1 and c2 undermine
each other, all the following hold:

P (e+|c−1 , c−2) = 0, P (e+|c+
1 , c−2) > 0, P (e+|c−1 , c+

2) > 0,

P (e+|c+
1 , c+

2) < min(P (e+|c+
1 , c−2), P (e+|c−1 , c+

2)).

Reinforcement and undermining occur between
individual as well as sets of variables. Variables
within each set can be reinforcing, while the sets
can undermine each other. Hence, Wi in Def. 1
is not necessarily a singleton.
Definition 1. Let R = {W1, W2, ...} be a parti-
tion of a set X of causes, R′ ⊂ R be any proper
subset of R, and Y = ∪Wi∈R′Wi. Sets of causes
in R reinforce each other, iff ∀R′ P (e+ ←
y+) ≤ P (e+ ← x+). Sets of causes in R un-
dermine each other, iff ∀R′ P (e+ ← y+) >
P (e+ ← x+).

Disjoint sets of causes W1, ..., Wm satisfy
failure conjunction iff e+ 6← w+

1 , ..., w+
m =

∧m
i=1(e

+ 6← w+
i). That is, collective failure is

attributed to individual failures. They also
satisfy failure independence iff P (∧m

i=1(e
+ 6←

w+
i)) =

∏m
i=1 P (e+ 6← w+

i). Disjoint sets of
causes W1, ..., Wm satisfy success conjunction iff
e+ ← w+

1 , ..., w+
m = ∧m

i=1(e
+ ← w+

i). That is,
collective success requires individual effective-
ness. They also satisfy success independence iff
P (∧m

i=1(e
+ ← w+

i)) =
∏m

i=1 P (e+ ← w+
i).

Causes are reinforcing whenever they satisfy
failure conjunction and independence, and they
are undermining whenever they satisfy success
conjunction and independence. Hence, under-

+ ++ +

+ + +e c ,...,c1 n

1 n...
e ce c + ++ +

+ + +e c ,...,c1 n

1 n...
e ce c

Figure 1: Direct (left) and dual (right) NIN-
AND gates
mining can be modeled by a direct NIN-AND
gate (Fig. 1, left), and reinforcement by a dual
NIN-AND gate (right). Complex mixture of re-
inforcement and undermining can be modeled
by an NIN-AND tree defined below.

Definition 2. An NIN-AND tree T is a directed
tree for effect e and a set X = {c1, ..., cn} of
occurring causes.

1. There are two types of nodes, event nodes
(a black oval of in-degree ≤ 1 and out-
degree ≤ 1) and gate nodes (a NIN-AND
gate) of in-degree ≥ 2 and out-degree 1.

2. There are two types of links, each connect-
ing an event and a gate along input-to-
output direction of gates, forward links (a
line) and negation links (with a white oval
at gate end).

3. Each terminal node is an event labelled by a
causal event e+ ← y+ or e+ 6← y+. There
is a single leaf (no child) with y+ = x+,
connecting to the leaf gate. For each
root (no parent; indexed by i), y+

i
⊂ x+,

y+
j
∩ y+

k
= ∅ for j 6= k, and

⋃
i y+

i
= x+.

4. For inputs to a direct gate g, each is either
connected by a forward link to a node la-
belled e+ ← y+, or by a negation link to a
node labelled e+ 6← y+. Gate g outputs by a
forward link to a node labelled e+ ← ∪iy

+
i
.

5. For inputs to a dual gate g, each is either
connected by a forward link to a node la-
belled e+ 6← y+, or by a negation link to a
node labelled e+ ← y+. Gate g outputs by a
forward link to a node labelled e+ 6← ∪iy

+
i
.

Fig. 2 shows an NIN-AND tree, where X =
{c1, ..., c5}. The leaf gate g1 is dual, and so is g3.
The remaining gates are direct. Causes c2 and
c5 are undermining each other, but they rein-
force c3 (and vice versa). Collectively, the three
undermines c4. The four of them reinforces c1.

A root node may be labelled by a singular or
multi-causal event. In this paper, we assume
that it is singular. When we refer to a node in
T by v, we overload the symbol v to refer also
to the causal event that labels the node.

Definition 3. An NIN-AND tree model M is a
quadruple (X, e, T, B). X is a set of uncertain
causes of effect e. T is an NIN-AND tree for e
and X. B is a set of parameters, one for each

root in T and being a potential in (0, 1] over the
corresponding causal event.

g4

g1

g2

g3

e c , c 2 5
+ + +

e c+ +
5

e c+ +
1

4e c+ +

e c+ +
3

+ + + +
2 3 5e c , c , c

+ + + + +e c , c , c , c

+ + + + + +
1 2 3 4 5e c , c , c , c , c

2 3 4 5

2e c+ +

Figure 2: An NIN-AND tree
For a root v in T , when parameter B(v) < 1,

it represents probability P (v). When B(v) = 1,
it plays a special role to be described below. T

is a full NIN-AND tree if X = C, otherwise T is
partial. Model M is defined to be full or partial
similarly.

Model M = (X, e, T,B) can be obtained by
eliciting tree T plus |X | singular causal proba-
bilities. Probability P (e+|x+, y−), where C =
X ∪ Y and X ∩ Y = ∅, can then be derived as
P (e+ ← x+).
Definition 4. An NIN-AND tree T is minimal
if, whenever a gate g feeds directly into another
gate g′, the types (direct or dual) of g and g′

differ.

The NIN-AND tree in Fig. 2 is minimal.
Model M = (X, e, T,B) is minimal if T is min-
imal.

3 Probability of Leaf Causal Event

Algorithm 1 below computes probability of the
leaf event of a minimal NIN-AND tree model
M . All nodes mentioned are event nodes. We
refer to the number of gate nodes from an event
node v to the leaf as the level of v. If event node
w feeds into a gate that connects to event node
v, we simply refer to w as the parent of v.
Algorithm 1. GetLeafEventProb(M)
Input: A minimal NIN-AND tree model M ;

1 for each non-root node v, set B(v) = 1;
2 L = max level of any root in T ;
3 for lev = L− 1 to 0, do
4 for each non-root node v at level lev, do
5 for each parent w of v, do
6 if w is a root, B(v) = B(v) ∗B(w);
7 else if B(w) < 1,
8 B(v) = B(v) ∗ (1−B(w));
9 return B(x) where x is the leaf;

Consider model M = (X, e, T,B), where T is
shown in Fig. 2 and B is defined as follows:

P (e+ 6← c+
1) = 0.2, P (e+ ← c+

2) = 0.85,

P (e+ 6← c+
3) = 0.3, P (e+ ← c+

4) = 0.65,
P (e+ ← c+

5) = 0.75

GetLeafEventProb(M) returns P (e+ 6←
c+
1 , ..., c+

5) = 0.0841375, that is, P (e+ ←
c+
1 , ..., c+

5) = 0.9158625.
The following proposition shows that if all

parameters in M are root event probabilities,
GetLeafEventProb(M) computes the leaf event
probability exactly.

Proposition 1. Let M be a minimal NIN-
AND tree model with the leaf node x and with
B(v) = P (v) < 1 for each root v. Then B(x)
returned from GetLeafEventProb(M) is equal
to P (x) as determined by root event probabili-
ties and causal interactions encoded in the tree
topology of M .

Proof: We prove by induction on the maximal
level L of any root. If L = 1, all parents of the
leaf x are roots. The loop beginning at line 3
iterates exactly once and so does the loop at line
4 (relative to x). Each parent w of leaf x has
B(w) = P (w) from specification of M . Hence,
we have B(x) =

∏
w P (w) from line 6. Since

each P (w) < 1, we have B(x) < 1.
If the leaf gate g is direct, by Def. 2 (4), each

w is a causal success and so is x. T implies that
causes satisfy success conjunction and indepen-
dence. Hence, B(x) correctly models their un-
dermining relation, and B(x) = P (x). If g is
dual, by Def. 2 (5), each w is a causal failure
and so is x. T implies that causes satisfy fail-
ure conjunction and independence. Hence, B(x)
correctly models their reinforcing relation, and
B(x) = P (x).

Assuming that the proposition holds with
L ≤ k for k ≥ 1, consider the case L = k + 1.
Let y be a node at level 1. If y is a root, we
have B(y) = P (y) from specification of M .

If y is a non-root, it defines a subtree T ′

of T with the leaf being y, and a correspond-
ing submodel M ′. The loop at line 3 iter-
ates k+1 times during GetLeafEventProb(M).
The computation in the first k iterations that
involves nodes in T ′ is exactly the same compu-
tation performed by GetLeafEventProb(M ′).
Since for M ′, L′ ≤ k, by inductive hypothe-
sis, B(y) returned by GetLeafEventProb(M ′)
is exactly P (y). Hence, at the end of k’th iter-
ation during GetLeafEventProb(M), we have
B(y) = P (y) < 1.

The above argument holds for each node y at
level 1. At the k+1’th iteration (loop at line 3)
of GetLeafEventProb(M), node v is the leaf
x. If y is a root, B(y) affects B(x) through line
6. This is correct since y and x are either both
causal successes or both causal failures. If y is
a non-root, since B(y) < 1, test in line 7 will
succeed, and B(y) affects B(x) through line 8.
This is correct since M is minimal. Either y is a
causal failure and x is a causal success, or y is a
causal success and x is a causal failure. Hence,
B(x) is computed by the correct product ac-
cording to the type of leaf gate (and its implied
causal interaction), and we have B(x) = P (x).

2

Computation of leaf event probability is an
essential component of NIN-AND tree model-
ing. The algorithm above improves upon that
in (Xiang and Jia, 2007). It takes advantage of
a minimal model, while the latter does not. It
is iterative while the latter is recursive. Hence,
when the number of input events of a gate is
upper bounded, its complexity is O(n), while
that of the latter is O(n2). This saving is am-
plified during CPT computation, as it needs to
be preformed O(2n) times, as shown below.

4 CPT Computation without
Model Regeneration

NIN-AND tree models can be used to acquire a
CPT P (e|C) efficiently. As proposed in (Xiang

and Jia, 2007), the model M = (C, e, T, B) is
elicited first, from which P (e+|c+) can be com-
puted as P (e+ ← c+). For each P (e+|x+, y−),
where X ⊂ C and Y = C \ X , a model
M ′ = (X, e, T ′, B′) is created by modifying T

into T ′. The modification involves removing
roots corresponding to absent causes as well
as downstream event and gate nodes, and ar-
rives at a significantly different tree structure.
P (e+|x+, y−) is then computed from M ′ as
P (e+ ← x+). Hence, this method requires gen-
eration of O(2|C|) NIN-AND tree models M ′.

For instance, suppose C = {c1, ..., c5}
and T is as shown in Fig. 2. To com-
pute P (e+|c+

1 , c+
2 , c+

3 , c−4 , c+
5) = P (e+ ←

c+
1 , c+

2 , c+
3 , c+

5), T is modified by deleting event
node e+ ← c+

4 and gate g2 to create T ′ as shown
in Fig. 3 (a). T ′ is not minimal. To use the
equivalent minimal NIN-AND tree, the model
shown in (b) needs to be created.

g3

g4

g4

g3
e c+ +

1

(a)

+ + + + +e c , c , c , c1 2 3 5

5
+ +e c

+ + +
2 5 e c , c

(b)

e c , c 2 5
+ + +

e c+ +
5

e c+ +
3

+ + + +
2 3 5e c , c , c

+ + + + +e c , c , c , c1 2 3 5

g1

2e c+ +

2e c+ +

e c+ +
1

e c+ +
3

Figure 3: NIN-AND trees modified from Fig. 2
when c4 is absent

We propose an alternative method below for
CPT computation which does not require gen-

eration of an exponential number of models.

Algorithm 2. GetCPTByNinAndTree(M)
Input: A minimal, full NIN-AND tree model M ;

1 M’ = M;
2 P (e+|c+) = GetLeafEventProb(M ′);
3 P (e+|c−) = 0;
4 for each non-empty X ⊂ C, do
5 Y = C \X;
6 for each root v in T , do
7 if causal event at v involves z ∈ X,
8 set B′(v) = B(v);
9 else set B′(v) = 1;
10 P (e+|x+, y−) = GetLeafEventProb(M ′);
11 return P (e+|C);

GetCPTByNinAndTree(M) uses a dupli-
cated model M ′ of M for computing all proba-
bilities in P (e+|C). P (e+|c+), where all causes
are present, is derived from unmodified M ′.
P (e+|c−), where all causes are absent, is triv-
ially set, as C is the entire set of causes of e.

All other probabilities in P (e+|C) are in the
form P (e+|x+, y−), and are computed by the
loop started in line 4, one per iteration. In the
iteration relative to a given P (e+|x+, y−), the
potential for each root in M ′ is reset by the loop
started in line 6. For each root whose causal
event concerns the cause z, if x+ includes z,
the potential associated with the root is set to
the potential in the corresponding root in M .
Otherwise, y− must include z, and the potential
of the root is set to 1. We consider the effect of
this assignment below.

According to Algorithm 1, root potentials are
not modified. From line 6 of Algorithm 1, if the
potential of a root v is 1, it has no impact to
the potential of its child node, and hence has no
impact to the value of P (e+|x+, y−). When a
cause z is included in y−, it is absent. Hence,
this is exactly the effect expected.

Furthermore, consider the child node u of the
root v. If all its parents of u are roots like v,
B(u) will remain at the value 1 due to line 1 of
Algorithm 1. Hence, B(u) will have no impact
to the value of P (e+|x+, y−). This is exactly
the effect expected when causes appearing up-
stream to u are all absent.

On the other hand, if any root parent w of

u involves a cause z that is included in x+, it
must be the case B(w) < 1 (Algorithm 2, line
8). By line 6 of Algorithm 1, B(w) affects B(u)
correctly as a factor.

By an inductive argument, any non-root w
with ancestors that involve causes in x+, it must
be the case B(w) < 1. By lines 7 and 8 of
Algorithm 1, B(w) will affect B(u) correctly as
a factor, where u is the child of w. This leads
to the following theorem whose proof can be
phrased based on the above analysis.

Theorem 1. Let M be a minimal, full NIN-
AND tree model with B(v) = P (v) < 1 for each
root v. Then P (e+|C) returned by GetCPT-
ByNinAndTree(M) is exact relative to root event
probabilities and causal interactions encoded in
the tree topology of M .

Note that GetCPTByNinAndTree(M)
needs only modify the root potentials of M ′ for
the computation of each P (e+|x+, y−). Hence,
the computation to generate an exponential
number of NIN-AND tree models is saved
without affecting exactness.

5 Tree Structure Acquisition by
Pairwise Causal Interaction

To acquire a minimal NIN-AND tree model
M = (C, e, T, B), the tree structure T must
be obtained. It has been shown (Xiang et al.,
2009a) that T defines a pairwise causal inter-
action function pci from pairs of distinct causes
{ci, cj} ⊂ C, where i 6= j, to the set {rif, udm},
where rif stands for reinforcing and udm stands
for undermining. Table 1 shows an example.

Table 1: The pci function defined by NIN-AND
tree in Fig. 2

ci cj pci(ci, cj) ci cj pci(ci, cj)
c1 c2 rif c2 c4 udm
c1 c3 rif c2 c5 udm
c1 c4 rif c3 c4 udm
c1 c5 rif c3 c5 rif
c2 c3 rif c4 c5 udm

Furthermore, for |C| ≤ 10, it has been com-
putationally verified (Xiang et al., 2009a) that,

the pci function of T is unique among pci func-
tions of alternative minimal NIN-AND trees
over C and e. Therefore, given the pci func-
tion of T , the tree structure can be identified
uniquely. For instance, given Table 1, Fig. 2
is the unique full minimal NIN-AND tree. This
fact suggests that, instead of eliciting T directly
from expert, it can be obtained alternatively by
eliciting the corresponding pci function. Denote
n = |C|, the number of pairwise causal interac-
tions to be elicited is n(n−1)/2. We investigate
this approach below.

First of all, does every pci function corre-
spond to a NIN-AND tree? Since given n = |C|,
the number of pairwise causal interactions is
n(n− 1)/2, the number of alternative pci func-
tion for n causes is 2n(n−1)/2.

On the other hand, every NIN-AND tree de-
fines the same pci function as its minimal NIN-
AND tree. Hence, it is sufficient to count the
number of minimal NIN-AND trees. Unfortu-
nately, no closed formula is known for the num-
ber of minimal NIN-AND trees over n causes.
Instead, the number can be obtained by enu-
meration of minimal NIN-AND trees given n
(Xiang et al., 2009b; Xiang et al., 2009a).

Table 2 compares the number of alternative
pci functions and that of minimal NIN-AND
trees given n. The rows are indexed by n. The
second column lists the number of pci functions.
The third column lists the number of minimal
NIN-AND trees. The last column is the ratio of
the number in the second column over that in
the third column.

Table 2: Comparison of the number of pci func-
tions and that of minimal NIN-AND trees

n No. pci func No. trees Ratio
3 8 8 1
4 64 52 1.2
5 1024 472 2.2
6 32768 5504 6
7 2097152 78416 26.7
8 268435456 1320064 203
9 68719476736 25637824 2680

We refer to a pci function that can be imple-

mented by an NIN-AND tree as feasible. Oth-
erwise, it is infeasible. Hence, Table 2 shows
that other than n = 3, there are more infea-
sible pci functions than feasible ones. It fol-
lows that in acquisition of an NIN-AND tree by
elicitation of the corresponding pci function, an
expert could specify an infeasible pci function.
This could happen for at least two reasons. The
expert could misspecify some pairwise interac-
tion (human error), or the specified function is
not expressible by an NIN-AND tree model.

From the human error perspective, having
more infeasible pci functions is desirable, be-
cause a misspecified pci function can thus be
detected rather than being regarded as feasible
and causing an unintended NIN-AND tree to be
returned unnoticed.

Furthermore, as n grows, the ratio between
number of pci functions and number of minimal
NIN-AND trees grows very rapidly. This is also
desirable because, as n grows, a misspecified pci
function is even more likely to be detected. This
counter-balances the increased chance of human
error due to the increased number of pairwise
causal interactions to be elicited as n grows.

Next, we consider what an NIN-AND tree ac-
quisition software should do when expert spec-
ifies an infeasible pci function. Rejecting the
function is a simple measure. However, it would
be more helpful to assist expert in correcting
the mistake in the case of human error, and in
providing an approximation in the case of inex-
pressibility. We propose such a method below.

Definition 5. Let C be a set of causes and Pci
be a pci function over C. Let ρ be an ordering of
pairs of causes in C. Let Pciρ be the sequence
of Pci values ordered according to ρ. Let BPciρ
be the binary string obtained from Pciρ by re-
placing each rif value with 1 and each udm value
with 0. Then BPciρ is the binary string expres-
sion of Pci relative to ordering ρ.

Definition 6. Let C be a set of causes, and Pci

and Pci′ be two pci functions over C. Let BPciρ
and BPci′ρ be the binary string expressions of
Pci and Pci′, relative to ordering ρ of causes
in C. Then the following sum is the distance

between Pci and Pci′:

Dist(Pci, Pci′) =
n(n−1)/2∑

i=1

|BPciρ[i]−BPci′ρ[i]|,

where BPciρ[i] refers to the ith bit of BPciρ.

Definition 7. Let Pci be a pci function over
C. The minimum distance of Pci from feasible
pci functions over C is

MinDist(Pci) = min
T

Dist(Pci, PciT),

where PciT is the pci function defined by an
NIN-AND tree T .

Note MinDist(Pci) = 0 if Pci is feasible.
Otherwise, we have MinDist(Pci) > 0, and
there exists a set of minimal NIN-AND trees
whose pci functions differ from Pci by distance
MinDist(Pci). When an expert-specified Pci

is detected as infeasible, we propose to return
in response either this set of minimal NIN-AND
trees or the pairwise interactions implied by
them with those interactions that differ from
Pci highlighted. This response should be useful
for interactive error correction by expert and for
choosing the best approximate NIN-AND tree.

For example, suppose that expert speci-
fied the pci function in Table 1 with an er-
ror pci(c2, c4) = rif . The resultant func-
tion Pci is infeasible. It can be shown that
MinDist(Pci) = 1 and there are six minimal
NIN-AND trees whose pci functions differ from
Pci by distance 1. One of them is Fig. 2.

We exhaustively tested all pci functions for
4 ≤ n ≤ 7 (Test for n = 7 took about 50 hours
on a 8-core workstation). For each n value, we
define the following maximal minimum distance
between individual pci function and feasible pci
functions over n causes:

MaxMinDist(n) = max
Pci

MinDist(Pci),

where Pci is a pci function over n causes. Ta-
ble 3 shows this distance for 4 ≤ n ≤ 7.

This result shows that for n = 7, if a func-
tion Pci is infeasible, a minimal NIN-AND tree
exists whose pci function differs from Pci by
no more than four pairwise causal interactions.

Table 3: Maximal minimum distance between
individual pci function and feasible ones

n 4 5 6 7
MaxMinDist(n) 1 2 2 4

Our experiments also show that for many in-
feasible pci functions, a minimal NIN-AND tree
exists whose pci function differs from the infea-
sible pci function by one pairwise interaction.

For an infeasible pci function Pci, there ex-
ist generally multiple minimal NIN-AND trees
whose pci functions differ from Pci by distance
MinDist(Pci). We define the maximum num-
ber of minimum distance trees for pci functions
over n causes as follows:

MaxNumMinDistTree(n) = max
Pci

|MinDistTree(Pci)|,

where Pci is a pci function over n causes, and
MinDistTree(Pci) is the set of minimal NIN-
AND trees whose pci functions differ from Pci
by distance MinDist(Pci). Table 3 shows this
number for 4 ≤ n ≤ 7.

Table 4: Maximum number of minimum dis-
tance trees for pci functions over n causes

n 4 5 6 7
MaxNumMinDistTree(n) 6 10 15 49

Our experiments also show that for many in-
feasible pci functions, |MinDistTree(Pci)| is a
small number (less than 10).

These results suggest that acquisition of min-
imal NIN-AND trees through elicitation of pci
function is feasible.

6 Conclusion

We presented an algorithm that improves the
efficiency for computing conditional probability
from an NIN-AND tree model. We proposed an-
other algorithm that computes CPT from a full
minimal NIN-AND tree model without having
to generate an exponential number of models.
Finally, we presented a technique that allows
interactive acquisition of NIN-AND trees from
pairwise causal interactions.

Future work includes suitability of NIN-AND
trees as approximations of arbitrary CPTs,
their exploitation in inference, human acquisi-
tion testing, and acquisition from learning.

Acknowledgement

Financial support from NSERC Discovery
Grant is acknowledged. I thank anonymous re-
viewers for their comments.

References

S.F. Galan and F.J. Diez. 2000. Modeling dynamic
causal interaction with Bayesian networks: temporal
noisy gates. In Proc. 2nd Inter. Workshop on Causal
Networks, pages 1–5.

D. Heckerman and J.S. Breese. 1996. Causal indepen-
dence for probabilistic assessment and inference using
Bayesian networks. IEEE Trans. on System, Man and
Cybernetics, 26(6):826–831.

J.F. Lemmer and D.E. Gossink. 2004. Recursive noisy
OR - a rule for estimating complex probabilistic in-
teractions. IEEE Trans. on System, Man and Cyber-
netics, Part B, 34(6):2252–2261.

P.P. Maaskant and M.J. Druzdzel. 2008. An indepen-
dence of causal interactions model for opposing in-
fluences. In M. Jaeger and T.D. Nielsen, editors,
Proc. 4th European Workshop on Probabilistic Graph-
ical Models, pages 185–192, Hirtshals, Denmark.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann.

Y. Xiang and N. Jia. 2006. Modeling causal rein-
forcement and undermining with noisy-and trees. In
L. Lamontagne and M. Marchand, editors, Advances
in Artificial Intelligence, LNAI 4013, pages 171–182.
Springer-Verlag.

Y. Xiang and N. Jia. 2007. Modeling causal rein-
forcement and undermining for efficient cpt elicita-
tion. IEEE Trans. Knowledge and Data Engineering,
19(12):1708–1718.

Y. Xiang, Y. Li, and J. Zhu. 2009a. Towards effec-
tive elicitation of NIN-AND tree causal models. In
L. Godo and A. Pugliese, editors, Inter. Conf. on Scal-
able Uncertainty Management (SUM 2009), LNAI
5785, pages 282–296. Springer-Verlag Berlin Heidel-
berg.

Y. Xiang, J. Zhu, and Y. Li. 2009b. Enumerating unla-
beled and root labeled trees for causal model acquisi-
tion. In Y. Gao and N. Japkowicz, editors, Advances
in Artificial Intelligence, LNAI 5549, pages 158–170.
Springer.

Y. Xiang. 2010. Generalized non-impeding noisy-AND
trees. In Proc. 23th Inter. Florida Artificial Intelli-
gence Research Society Conf., pages 555–560.

