
Multilabel Classification of Drug-like Molecules
via Max-margin Conditional Random Fields

Hongyu Su
University of Helsinki, Finland

hongyu.su@cs.helsinki.fi

Markus Heinonen
University of Helsinki, Finland
markus.heinonen@cs.helsinki.fi

Juho Rousu
University of Helsinki, Finland

juho.rousu@cs.helsinki.fi

Abstract

We present a multilabel learning approach for molecular classification, an important task
in drug discovery. We use a conditional random field to model the dependencies between
drug targets and discriminative training to separate correct multilabels from incorrect ones
with a large margin. Efficient training of the model is ensured by conditional gradient
optimization on the marginal dual polytope, using loopy belief propagation to find the
steepest feasible ascent directions. In our experiments, the MMCRF method outperformed
the support vector machine with state-of-the-art graph kernels on a dataset comprising of
cancer inhibition potential of drug-like molecules against a large number cancer cell lines.

1 Introduction

Machine learning has become increasingly im-
portant in drug discovery, where viable molecu-
lar structures are searched or designed for ther-
apeutic efficacy. In particular, the costly pre-
clinical in vitro and in vivo testing of drug can-
didates can be focused to the most promising
molecules, if accurate in silico models are avail-
able (Trotter et al., 2001).

Molecular classification has been tackled with
a variety of methods, including inductive logic
programming (King et al., 1996) and artificial
neural networks (Bernazzani et al., 2006). Dur-
ing the last decade kernel methods (Ralaivola
et al., 2005; Swamidass et al., 2005; Trotter et
al., 2001; Ceroni et al., 2007) have emerged as
a computationally effective way to handle the
non-linear properties of chemicals. In numer-
ous studies, SVM-based methods have obtained
promising results (Byvatov et al., 2003; Trot-

ter et al., 2001; Zernov et al., 2003). However,
classification methods focusing on a single tar-
get variable are probably not optimally suited
to drug screening applications where large num-
ber of target cell lines are to be handled.

Multilabel classification, where the objects
can be classified into more than one category
at a time, have received a significant atten-
tion in recent years both in hierarchical (Silla
and Freitas, 2010) and Bayesian network set-
tings (de Waal and van der Gaag, 2007; Ro-
driguez and Lozano, 2008). In this paper we
propose, to our knowledge, the first applica-
tion of multilabel learning to molecular classi-
fication. Our learning method belongs to the
structured output prediction family (Taskar et
al., 2003; Tsochantaridis et al., 2004; Rousu et
al., 2006; Rousu et al., 2007); the drug targets
(cancer cell lines) are organized in a Markov net-
work, drug molecules are represented by kernels
and max-margin training is used to learn the



parameters. Loopy belief propagation over the
Markov network is used both in learning the
model and in extracting the predicted multil-
abel.

2 Multilabel learning with MMCRF

The model used in this paper is an instantiation
of the Max-Margin Conditional Random Field
(MMCRF) framework (Rousu et al., 2007) for
associative Markov networks and can also seen
as a sibling method to HM3 (Rousu et al., 2006),
which is designed for hierarchies. Here we give
an overview of the method for transparency, the
interested reader may check the details from the
above references.

We consider data from a domain X ×Y where
X is a set and Y = Y1 × · · · × Yk is a Cartesian
product of the sets Yj = {+1,−1}, j = 1, . . . , k.
A vector y = (y1, . . . , yk) ∈ Y is called the mul-
tilabel and the components yj are called the mi-
crolabels.

We assume that a training set {(xi,yi)}mi=1 ⊂
X ×Y has been given. In addition, a pair (xi,y)
where xi is a training pattern and y ∈ Y is ar-
bitrary, is called a pseudo-example, to denote
the fact that the pair may or may not be gener-
ated by the distribution generating the training
examples. As the model class we use the expo-
nential family

P (y|x) ∝
∏
e∈E

exp
(
wT
e ϕe(x,ye)

)
defined on the edges of a Markov network G =
(V,E), where node j ∈ V corresponds to the
j’th component of the multilabel and the edges
e = (j, j′) ∈ E correspond to a microlabel de-
pendency structure given as input. By ye =
(yj , yj′) we denote the pair of microlabels of the
edge e = (j, j′) and ϕ(x,y) = (ϕe(x,ye))e∈E
is a joint feature map for inputs and outputs.
The joint feature map is given by the tensor
product ϕ(x,y) = φ(x)⊗ψ(y) of input features
φ(x) computed from the molecules (see Section
3) and output features ψ(y) = (ψeu(y)) corre-
sponding to possible labelings u ∈ {+1,−1}2 of
the edges e ∈ E: ψeu(y) = Jye = uK. The ten-
sor product then contains all pairs φr(x)·ψeu(y)

of input and output features. The benefit of the
tensor product representation is that context
(edge-labeling) sensitive weights can be learned
for input features and no prior alignment of in-
put and output features need to be assumed.

2.1 Max margin learning

To learn the parameters of the model we ap-
ply margin-based structured output prediction
(c.f. (Taskar et al., 2003; Tsochantaridis et al.,
2004)). The primal optimization problem takes
the form

minimize
w

1

2
||w||2 + C

m∑
i=1

ξi (1)

s.t. wT∆ϕ(xi,y) ≥ `(yi,y)− ξi,
for all i and y,

where ∆ϕ(xi,y) = ϕ(xi,yi) − ϕ(xi,y), `(yi,y)
is the loss of the pseudo-example, ξi is the slack
and the parameter C controls the amount of
regularization in the model. The corresponding
Lagrangian dual problem takes the form:

maximize
α≥0

αT `− 1

2
αTKα (2)

s.t.
∑
y

α(i,y) ≤ C,∀i,y,

where K =
(
∆ϕ(xi,y)T∆ϕ(xj ,y

′)
)

is the joint
kernel matrix for pseudo-examples (xi,y) and
` = (`(yi,y))i,y encodes the loss for each (xi,y).

2.2 Marginal dual problem

The above optimization problems are challeng-
ing due to the exponential number of con-
straints or dual variables. A more manageable
sized problem is obtained by considering the
edge-marginals of dual variables

µ(i, e, u) =
∑
y∈Y

ψeu(y)α(i, y), (3)

where e ∈ E is an edge in the output network
and u ∈ {+1,−1}2 is a possible labeling for the
edge. Using the marginal dual representation,
we can state the dual problem (2) in equivalent
form as (for details, see (Rousu et al., 2007)):

max
µ∈Mm

µT `− 1

2
µTKEµ, (4)



where M denotes the marginal polytope1 (c.f.
(Wainwright et al., 2005)), the set of all com-
binations of marginal variables (3) of an exam-
ple that have a counterpart in the dual feasi-
ble set in (2), KE = diag(Ke)e∈E contains the
joint kernel values pertaining to the edges, µ =
(µ(i, e, v)) is the vector of marginal dual vari-
ables and ` = (`(i, e, v)) is the vector of losses
between edge-labelings, `(i, e, v) = `(yie, v).
This problem is a quadratic programme with
a number of variables linear in both the size of
the output network and the number of training
examples. Thus, there is an exponential reduc-
tion in the number of dual variables from the
original dual (2).

2.3 Conditional gradient optimization

The marginal dual problem is solved by an itera-
tive optimization algorithm where the marginal
dual variables of each example in turn are op-
timized using conditional gradient algorithm
whilst keeping the other training examples
fixed. The conditional gradient step (Algorithm
1) iteratively finds the best feasible direction
given the current subgradient gi = `i − Ki·µ
of the objective

µ∗i = argmax
v∈M

gTi v (5)

and uses exact line search to locate the optimal
point in that direction.

The feasible ascent directions in (5) corre-
spond to vertices2 of the marginal dual polytope
M which via (3) are images of the vertices of the
original dual set and thus have one to one cor-
respondence to the set of possible multilabels.

Consequently, for each solution µ∗i of (5) there
is a corresponding multilabel y∗ which, compar-
ing equations (5) and (1), can be seen as the
pseudo-example (xi,y) that violates its margin
maximally. Instead of (5) we can thus solve the

1We use the same probabilistic interpretation of dual
variables as (Taskar et al., 2003).

2In the presence of ties, there is a set of vertices with
optimum score; ties can be broken arbitrarily.

multilabel with maximum gradient

y∗ = argmax
y

gTi µ
∗
i (y)

= argmax
y

∑
e∈E

g(i, e,ye)µ(i, e,ye) (6)

and return the corresponding vertex µ∗ = µ(y∗)
of the marginal dual polytope. The problem (6)
is readily seen as an inference problem on the
Markov network G: one must find the configu-
ration y∗ that maximizes the sum of the ‘edge
potentials’ g(i, e,ye)µ(i, e,ye).

Inference on a general graph is known to be
hard. However, for our purposes, an approxi-
mate solution suffices: within an iterative algo-
rithm it does not pay to spend a lot of time look-
ing for optimal ascent direction when a reason-
able ascent direction can be found fast. Here we
opt to use loopy belief propagation with early
stopping: we only compute a few iterations
(given by the user parameter maxLBPiter) of
the inference before returning (row 3 in Algo-
rithm 1).

In addition to being the workhorse for op-
timizing the classification model, loopy belief
propagation is also used in the prediction phase
to extract the model’s prediction given the
learned parameters.

Algorithm 1 Conditional gradient inference
for single example.

Input: Initial dual variable vector µi, gradient
gi, a joint kernel block Kii for the subspace

Output: New values for dual variables µi.
1: iter = 0;
2: while iter < maxcgiter do
3: µ∗i = feasibleDir(gi, E,maxLBPiter);
4: τ = lineSearch(µ∗i , µi,Kii);
5: if τ ≤ 0 then
6: break; % no progress, stop
7: else
8: µi = µi + τ(µ∗ − µi); % new solution
9: gi = gi−τKii(µ

∗−µi); % new gradient
10: end if
11: iter = iter + 1;
12: end while



3 Kernels for drug-like molecules

Prediction of bioactivity is typically based on
the physico-chemical and geometric properties
of the molecules. Kernels computed from the
structured representation of molecules extend
the scope of the traditional approaches by al-
lowing complex derived features to be used
while avoiding excessive computational cost
(Ralaivola et al., 2005). In this section, we
will review the main approaches to construct
a graph kernel for classification of drug-like
molecules.

3.1 Walk Kernel

The classic way to represent the structure of a
molecule is to use an undirected labeled graph
G = (V,E), where vertices V = {v1, v2, . . . , vn}
corresponds to the atoms and edges E =
{e1, e2, . . . , em} to the covalent bonds. Vertex
labels correspond to atom types (e.g. “oxy-
gen”, “carbon”, etc.), and edge labels corre-
spond to bond types (e.g. “single”, “double”,
“aromatic”, etc.). The n × n adjacency matrix
E of graph G is defined such that its (i, j)’th
entry Eij equals to one if and only if there is an
edge between vertices vi and vj .

Walk kernels (Kashima et al., 2003; Gärtner,
2003) compute the sum of matching walks in a
pair of graphs. The contribution of each match-
ing walk is downscaled exponentially according
to its length. A walk of length m in a graph G
is denoted by w = {v1, v2, ..., vm} such that for
i = 1, 2, ...,m− 1 there exists an edge for each
pair of vertices (vi, vi+1).

A direct product graph between two undi-
rected graphs G1 = (V1, E1) and G2 = (V2, E2)
is denoted by G×(G1, G2). Vertices of a product
graph G×(G1, G2) are defined as

V×(G1, G2) ={(v1, v2) ∈ V1 × V2,
label(v1) = label(v2)},

and edges are defined as

E×(G1, G2) ={((v1, v2), (u1, u2)) ∈ V× × V×,
(v1, u1) ∈ E1 ∧ (v2, u2) ∈ E2}.

The walk kernel can be defined as

Kwk(G1, G2) =

|v×|∑
i,j=1

[ ∞∑
n=0

λnEn×

]
ij

,

where v× is the vertex in product graph, λn is
the positive downscaling factor that is strictly
less than one and n is the length of walk.

Since longer walks are downscaled by λn, the
contribution of longer walks are ofter negligible.
Therefore, we consider finite-length walk kernel
where only walks of length p are explicitly con-
structed:

Kwkp(G1, G2) =
∑
vi∈V×

Dp(vi),

where Dp(vi) is calculated in a dynamic pro-
gramming fashion by

D0(vi) = 1,

Dn(vi) =
∑

vi,vj∈E×

Dn−1(vj).

3.2 Weighted decomposition kernel

The weighted decomposition kernel is an ex-
tension of the substructure kernel by weighting
identical parts in a pair of graphs based on con-
textual information (Ceroni et al., 2007).

A weighted decomposition kernel on a labeled
graph G is based on a decomposition Dr(G) =
{(s, z) : s ∈ V, z = Nr(s)}, where Nr(s) is the
neighborhood subgraph of radius r of vertex s.
The s is called selector, and z is the subgraph
around it called contextor. A kernel function
between two graphs G1 and G2 is defined as

Kwdk(G1, G2) =
∑

v,z∈Dr(G1)
v′,z′∈Dr(G2)

Jv = v′KKs(z, z
′),

where Ks(z, z
′) is the kernel function between a

pair of contextors. The function Ks(z, z
′) uses

the subgraph histogram intersection kernel dis-
carding subgraph structure information defined
as



Ks(z, z
′) =

∑
l∈L

Kr(z, z
′),

Kr(z, z
′) =

ml∑
j=1

min{pl(j), p′l(j)},

where L is total number of attributes labeled
on each vertex, ml is the number of possible val-
ues of the l’th property, and pl(j), p

′
l(j) are the

observed frequencies of value j for l’th attribute
for subgraphs z and z′, respectively.

3.3 Molecular fingerprints and the
Tanimoto kernel

Molecular fingerprints are designed to encode a
molecular structure into a fixed width binary bit
vector that represents the presence or absence
of substructures or fragments in the molecule.
Molecular fingerprints are extensively used in
chemical informatics.

There are two main types of fingerprints.
Hash fingerprints enumerate all linear frag-
ments of length n in a molecule. Parame-
ter n is usually bounded from three to seven.
A hash function assigns each fragment a hash
value, which determines its position in descrip-
tor space.

Another major fingerprint type is substruc-
ture keys, which is based on a pattern matching
of a molecular structure to a set of pre-defined
substructures. Each substructure becomes a
key and has a fixed position in descriptor space.
These substructures are considered to be inde-
pendent functional units identified by domain
experts as prior knowledge.

Once the molecules have been represented as
fingerprints, the Tanimoto kernel (Ralaivola et
al., 2005) is usually employed to measure the
similarity between a pair of molecules. Given
two molecular fingerprints fp1 and fp2, the
Tanimoto kernel is defined as

Ktk(fp1, fp2) =
Nfp1,fp2

Nfp1 +Nfp2 −Nfp1,fp2

,

where Nfp1 is the number of 1-bits in finger-
print fp1, Nfp2 is the number of 1-bits in finger-

print fp2, and Nfp1,fp2 is the number of 1-bits
in both of the fingerprints.

4 Experiments

4.1 NCI-Cancer dataset

In this paper we use the NCI-Cancer dataset
obtained through PubChem Bioassay3 (Wang
et al., 2009) data repository. The dataset ini-
tiated by National Cancer Institute and Na-
tional Institutes of Health (NCI/NIH) con-
tains bioactivity information of large num-
ber of molecules against several human cancer
cell lines in 9 different tissue types, including
leukemia, melanoma and cancers of the lung,
colon, brain, ovary, breast, prostate, and kid-
ney. For each molecule tested against a cer-
tain cell line, the dataset provides the bioactiv-
ity outcome that we use as the classes (active,
inactive).

However, molecular activity data are highly
biased over the cell lines. Figure 1 shows the
molecular activity distribution over all 59 cell
lines. Most of the molecules are inactive in all
cell lines, while a relatively large proportion of
molecules are active against almost all cell lines,
which can be taken as toxics. These molecules
are less likely to be potential drug candidates
than the ones in the middle part of the his-
togram.

In order to circumvent the skewness and to
concentrate on the most interesting molecules,
we adopted the preprocessing suggested in
(Shivakumar and Krauthammer, 2009), and se-
lected molecules that are active in more than 10
cell lines and inactive in more than 10 cell lines.
As a result, 544 molecules remained and were
employed in our experiments.

4.2 Experiment setup and measures of
success

To circumvent the skewness of the multilabel
distribution, we use the following stratified
cross-validation scheme to compare the meth-
ods: we divide examples into pools by the num-
ber of cell lines each molecule is active in (c.f.
Figure 1). Then, we divide each pool into five

3http://pubchem.ncbi.nlm.nih.gov
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Figure 1: Skewness of the multilabel distribu-
tion.

folds and finally merge the corresponding pool-
specific folds into five global folds.

To compare the performace of SVM and MM-
CRF in the multilabel prediction tasks we use
microlabel accuracy and microlabel F1 score:
we pool together individual microlabel predic-
tions over all examples and all cell lines, and
count accuracy and F1 from the pool.

4.3 Markov network generation for
cancer cell lines

There are many ways one can build the Markov
network in between the cell lines to be used
as input to the MMCRF algorithm. For the
dataset used in this paper, a large set of aux-
iliary data is available on the cancer cell lines
from the NCI database4. Based on prelimi-
nary tests we opted to use RNA Radiation Ar-
ray data. The basic approach is to construct
from this data a correlation matrix between the
pairs of cell lines and extract the Markov net-
work from the matrix by favoring high-valued
pairs. The following methods of network ex-
traction were considered:

SPT.Maximum weight spanning tree. Take
the minimum number of edges that make a

4http://discover.nci.nih.gov/cellminer/home.do

Table 1: MMCRF Accuracy and F1 score with
different Markov network extraction methods

RNA Rad. array
SPT CTh Rnd

Accuracy 67.6% 65.1% 66.3%

F1 Score 56.2% 52.8% 53.5%

Table 2: Accuracies and microlabel F1 scores
from different kernels in MMCRF and SVM.
Methods Accuracy F1 score

SVM + WK 64.6% 49.0%

SVM + WDK 63.9% 51.6%

SVM + Tanimoto 64.1% 52.7%

MMCRF + Tani-
moto

67.6% 56.2%

connected network whilst maximizing the
edge weights.

CTh.Correlation thresholding. Take all edges
that exceed fixed threshold. This ap-
proach typically generates a general non-
tree graph.

Rnd.Random graph. Draw edges uniformly at
random.

In our experiments, the spanning tree ap-
proach on RNA radiation array data turned
out to be best approach on average (Table
1). Suprisingly, correlation thresholding fails
to meet the accuracy of random graph. How-
ever, the predictive performance of MMCRF
surpasses SVM (c.f. Table 2) regardless of the
network generation method.

4.4 Effect of molecule kernels

We conducted experiments to compare the ef-
fect of various kernels, as well as the perfor-
mances of support vector machine (SVM) and
MMCRF. We used the SVM implementation of
the LibSVM software package written in C++5.
We tested SVM with different margin C param-
eters, relative hard margin (C = 100) emerging

5http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Figure 2: Microlabel F1 score of MMCRF
against SVM classifier in each cell line.

as the value used in subsequent experiments.
The same value was used for MMCRF classifier
as well.

For the three kernel methods, walk kernel
(WK) was constructed using parameters λ =
0.1 and p = 6 as recommended in (Gärtner,
2003). The Weighted decomposition kernel
(WDK) used context radius r = 3 as in (Ceroni
et al., 2007), and a single attribute (atom type)
was sufficient to give the best performance. We
also used hash fragments as molecular finger-
prints generated by OpenBabel6 (using default
value n = 6 for linear structure length), which is
a chemical toolbox available in public domain.
All kernels were normalized.

In Table 2, we report overall accuracies and
microlabel F1 scores using SVM with different
kernel methods. The kernels achieve almost
the same accuracy within SVM, while Tanimoto
kernel is slightly better than others in microla-
bel F1 score. We further compared MMCRF
and SVM classifiers with Tanimoto kernel. MM-
CRF turned out to outperform SVM in both
overall accuracy and microlabel F1 score.

Figure 2 gives the F1 score in each cell line
from MMCRF classifier against SVM classifier
in the same experiment. Points above the di-

6http://openbabel.org
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Figure 3: Effect of loopy belief propagation it-
eration.

agonal line correspond to improvements in F1
scores by MMCRF classifier. MMCRF im-
proves microlabel F1 scores of 39 out of 59 cell
lines with sign test giving the p-value of 0.018.
The statistics for accuracy were similar (data
not shown).

4.5 Effect of loopy belief propagation

Finally, we tested different loopy belief propaga-
tion iteration parameters to see the their effects
on convergence (Figure 3). The best loopy be-
lief propagation iteration limit turned out to be
maxLBPiter = 11, Smaller values were not suf-
ficient for MMCRF to reach a global optimum,
while larger values caused the convergence to
need more time. The optimal value turned out
to be close to the diameter of the Markov net-
work (10 in this case), indicating that propaga-
tion of messages through the whole network is
required for best performance.

5 Conclusions

We presented a multilabel classification ap-
proach to drug activity classification using the
Max-Margin Conditional Random Field algo-
rithm. In experiments against a large set of can-
cer lines the method significantly outperformed
SVM.
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