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Abstract

We study the maintenance of a dynamic system consisting of several components each of
which age with a constant transition probability of failure. The state of the components
are hidden. However, partial observations exist in each time period. The decision of
whether to replace a component or to do nothing is to be made in each decision epoch. A
hierarchical solution procedure is proposed to solve the problem. An aggregate model is
developed by aggregating states and actions so that it can be solved with exact partially
observable Markov decision process (POMDP) techniques. Then disaggregation is per-
formed by simulating the process using a dynamic Bayesian network (DBN) and applying
troubleshooting approaches in the decision epoch where replacement is planned in the
aggregate policy.

1 Introduction

We consider the maintenance planning problem
of a dynamic system whose status is not ob-
servable but is estimated through indirect sig-
nals. Such problems are common in space sys-
tems and hazardous material detection systems
where the system is far away and cannot be
directly observed. However, such systems can
still be controlled remotely to perform diagnos-
tic tests and repair actions.

The major difference of the problem we con-
sider from other maintenance problems in the
literature is the complex structure of the sys-
tem due to several (possibly interacting) com-
ponents which results in a huge state space.

Our approach to maintenance is akin to
the decision-theoretic troubleshooting problems
(DTTP) (Kalagnam and Henrion, 1988) in han-
dling complex system structures. Complex sys-
tem structure in DTTP is usually represented
with Bayesian Networks (BNs) (Heckerman et
al., 1995; Jensen et al., 2001) which encode the
conditional probabilistic dependence relations
of the components. We use the same kind of BN
representation at each discrete decision epoch.
In DTTP the task is to find a minimum-cost

action plan. DTTP has always been studied as
a static problem under the assumption that a
system has an observable malfunction and then
troubleshooting process starts. However, we
study a dynamic problem, hence the objective is
to minimize the total expected costs, comprised
of replacement and observation costs for a finite
planning horizon.

BNs have been used in reliability problems
to represent the (complex) relations in the sys-
tem (Torres-Toledano and Sucar, 1998; Bobbio
et al., 2001; Langseth and Portinale, 2006). Re-
cently there have also been studies using DBNs
in reliability analysis (Welch and Thelen, 2000;
Weber and Jouffe, 2003; Muller et al., 2004). A
DBN is an extended BN which includes a tem-
poral dimension. However all reliability stud-
ies with DBNs are descriptive (i.e.,the dynamic
problem is represented with DBNs and the out-
come of the analysis is how system reliability
behaves in time). The impact of performing
a repair at a specific time on this behavior is
also reported in some of them. However opti-
mization of maintenance activities (i.e., finding
a minimum cost plan) is not considered which
is one of the main motivations of this paper.



Therefore our approach is prescriptive as op-
posed to being descriptive.

The maintenance problem we consider can be
modeled as a POMDP (Hauskrecht, 2000) in
which the decision maker makes sequential de-
cisions under partial information. POMDPs fall
prey to the “curse of dimensionality” as their
state space grows exponentially with the num-
ber of components in the system. The type of
a POMDP model having several hidden vari-
ables is rarely studied due to its computational
complexity. There are algorithms for comput-
ing optimal solutions to POMDPs. However
these algorithms are applicable in practice only
to relatively simple problems. Also some struc-
tural results have been presented in some spe-
cific machine maintenance applications (Ross,
1971; Rosenfield, 1976), but such results are not
common for general POMDPs.

The rest of the paper is organized as follows:
In Section 2, we define and represent the main-
tenance planning problem. In Section 3, we
present the proposed solution. In Section 4, we
give the experimental design and the results of
computational study. In Section 5, we conclude
and point to further research directions.

2 Problem Definition and
Representation

2.1 Problem Definition

There is a system consisting of several compo-
nents each of which age with a constant transi-
tion probability of failure. It is not possible to
observe the system components, they are hid-
den. However the system gives signals at each
decision epoch which may indicate some partial
information about the state of the components.
This is the only information one can get from
the process. System components age with a con-
stant rate constituting the dynamic behavior of
the problem. It is possible to replace compo-
nents in any period and when a component is
replaced, a replacement cost is charged. On the
other side, since observing a signal indicating
faulty components in the next decision epoch
is undesirable, it incurs another type of cost,
which is called observation cost in this study.

There is a trade off between replacing the com-
ponents and observing undesirable signals. In
each decision epoch, the decision maker can ei-
ther prefer doing nothing or replacing only one
of the components. The aim is to find a pol-
icy that minimizes expected total replacement
and observation cost in a given horizon. The
following assumptions are made:

(i) Every component has a constant transition
probability of failure. (ii) All other conditional
probability distributions are discrete. (iii) All
components have two states (“w”: working
state, “nw”: failure state). (iv) Components
can only fail at the beginning of a time period.
Once they fail they will be in state “nw” unless
they are repaired. (v) Once a component is re-
placed in a period, its working state probability
becomes 1 in the next period. (vi) Only one
replacement can be done in a given epoch.

The first three assumptions are required for
computational purposes as DBN tools usually
work with discrete probabilities and states. The
fourth and fifth assumptions are standard in
reliability. The sixth assumption implies that
there is a limit to replacements at each epoch
(possibly due to a time or a budget constraint).

2.2 Problem Representation

The maintenance problem can be expressed as
a POMDP with the following parameters:

I : number of components in the process
i : index for component
Ci : set of states of component i, i = 1, · · · , I
A : set of actions
Θ : set of observations
T ′i : set of transition probabilities of component i.

T ′i :Ci ×A× Ci → [0, 1]
O′: set of observation probabilities among

component states and observations.
O′: C1 × · · · × CI ×Θ → [0, 1]

R : reward function that assigns rewards to
observations and actions. R : A×Θ → R

Part (only two epochs) of the influence dia-
gram describing the problem is given in Figure 1
where cit, at, ot and rt denote component state,
action, observation and reward at time t.
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Figure 1: Part of the influence diagram describ-
ing the maintenance problem

The system gives two types of signals: g and
r which stand for green and red respectively,
Θ = {g, r}. A green signal is preferred to a
red signal since it implies a better condition
of components. In each epoch, the decision
maker can either prefer doing nothing or re-
placing one of the components. Hence A =
{dn, rc1, rc2, · · · , rcI}, where dn denotes doing
nothing and rci denotes replacing component i
for i = 1, 2, · · · , I. Table 1 shows the transi-

Table 1: Transition probability of component i
at ∈ At\{rci}

ci,t+1

cit w nw

w pi 1− pi

nw 0 1

at = rci

ci,t+1

cit w nw

w 1 0
nw 1 0

tion probabilities, T ′i , for component i having
two states, Ci = {w, nw}, given at ∈ A\{rci}
and at = rci respectively. Here, at ∈ A\{rci}
means the decision maker takes an action other
than replacing component i in decision epoch
t. In this case, P (ci,t+1 = w|cit = w) = pi

where 0 < pi < 1 and 1 − pi is the constant
transition probability of failure for a working
component i. When at ∈ A\{rci} and compo-
nent i is non-working in period t, it will still be
non-working in the subsequent period t + 1. So
P (ci,t+1 = nw|cit = nw) = 1. When at = rci,
component i will be in its working state with
probability one in the next period no matter

whether it is working or not in the current pe-
riod.

3 Proposed Solution

The system under maintenance can be arbi-
trarily complex. There may be non-component
nodes in the system which are not temporal and
only transmits information from its parents to
its children. After eliminating these nodes from
the graph, we propose POMDPs as a solution to
the maintenance problem with the reduced joint
state space as the hidden process state space.
This space grows exponentially with the number
of component nodes in the graph. To overcome
this difficulty we propose a hierarchical solution
procedure where in the higher level we solve an
aggregate model of the problem with an exact
POMDP solver and in the lower level we disag-
gregate the aggregate solution using DBNs.

3.1 POMDP Formulation

The maintenance problem has a POMDP struc-
ture with the following exception: In a POMDP,
there is usually a single variable defining the
hidden process. However, in our problem the
hidden process is more complex since it consists
of several component nodes (Figure 1). One so-
lution to this drawback is to merge all compo-
nent nodes into a single mega node as in Fig-
ure 2. Here, the component nodes c1t,..cit,..,cIt

are merged into the process node st. After the
merge, the bold black arcs are added to the
model, the grey arcs are deleted from the model
and the rest of arcs are maintained as they are
before the merge. Let S be the new process
state space of st, T be the new set of transition
probabilities of the process node, and O be the
new set of observation probabilities. The follow-
ing conversions should be done to formulate the
problem as a POMDP. The new process state
space S is the Cartesian product of the com-
ponent state spaces and can be represented as
S = C1 × C2 × ...× CI , where |S| = ∏I

i=1 |Ci|.
The new observation probabilities O can be

constructed as follows:

P (ot|st) = P (ot|c1t, c2t, .., cIt), (1)
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Figure 2: Part of the influence diagram after
conversion to POMDP

which are in fact equal to the observation proba-
bilities O′ before merge. When components are
independent as in Figure 2, the new transition
probabilities T can be constructed from T ′i as in
(2). For more general models where there are
also dependencies among components, T can be
constructed with (3), where pa(ci,t+1) consists
of all parents of ci,t+1 including cit and at.

P (st+1|st, at) =
I∏

i=1

P (ci,t+1|cit, at), (2)

P (st+1|st, at) =
I∏

i=1

(ci,t+1|pa(ci,t+1)). (3)

3.2 Aggregate Model

We have formulated the maintenance problem
as a POMDP with a hidden state space whose
cardinality is |S| =

∏I
i=1 |Ci|. As i increases

|S| increases exponentially making the problem
harder to solve. To overcome this difficulty, we
can aggregate some states and form new ag-
gregate states Sp. Let Sa be the new state
space, built after aggregation, whose elements
are Sp which are mutually exclusive and totally
exhaustive sets (i.e., ∪P

p=1Sp = S, Sp ∩ Sq =
∅, p 6= q p, q = 1..P ). Let P be the new cardi-
nality of Sa, |Sa| = P . Let T a and Oa be the
new transition and observation probabilities of
this aggregate model which are obtained from

T and O respectively as follows:

P (st+1 ∈ Sq|st ∈ Sp, at) =

∑
st+1∈Sq

∑
st∈Sp

P (st+1|st, at)

|Sp| , (4)

P (ot|st ∈ Sp) =

∑
st∈Sp

P (ot|st)

|Sp| , (5)

where the cardinality |Sp| is a normalizing fac-
tor. When process states are aggregated, it is
more meaningful to aggregate the related ac-
tions. Let Aa denote the new action space, built
after aggregation, whose elements are Aj which
are mutually exclusive and totally exhaustive
sets (i.e., ∪J

j=1Aj = A, Aj ∩ Al = ∅, j 6=
l j, l = 1..J). Let J be the new cardinality of
Aa, |Aa| = J .

When actions are aggregated, it affects the
transition probabilities and the reward func-
tion since they depend on actions performed in
each decision epoch. Let T aa and Ra be the
new transition probabilities and the new reward
function of this aggregate model where actions
are also aggregated in addition to states. T aa

and Ra are obtained from the original data, T
and R, respectively as follows:

P (st+1 ∈ Sq|st ∈ Sp, at ∈ Aj) =

∑
at∈Aj

∑
st+1∈Sq

∑
st∈Sp

P (st+1|st, at)

|Aj ||Sp| , (6)

R(Aj , o) =

∑
a∈Aj

R(a, o)

|Aj | , (7)

where |Aj ||Sp| and |Aj | are normalizing factors.
In (6–7), actions are given equal probabilities
to be performed during aggregation. However,
when one prefers to replace some components
more or less frequently than the others, giving
weights to actions according to the desired fre-
quency is more appropriate. Let Wa be the
weight of action a. Let T aa

w and Ra
w be the

new transition probabilities and the new reward
function of this weighted aggregate model where
actions are also aggregated with respect to their
weights in addition to the aggregation of states.



T aa
w and Ra

w are obtained from the original data,
T and R, respectively as follows:

P (st+1 ∈ Sq|st ∈ Sp, at ∈ Aj) =

∑
at∈Aj

∑
st+1∈Sq

∑
st∈Sp

WaP (st+1|st, at)∑
at∈Aj

Wa|Sp| ,

(8)

R(Aj , o) =

∑
a∈Aj

WaR(a, o)∑
a∈Aj

Wa
. (9)

Although some detailed information is lost af-
ter aggregation, the aggregate model has fewer
process states and action states than the origi-
nal model, which makes it easier to solve.

3.3 Disaggregation

The aggregate solution given by an exact
POMDP solver is disaggregated to obtain an
expected maintenance cost of the original prob-
lem. Disaggregation is performed by simulat-
ing the process with a DBN tool (Bayesian
Network Toolbox) and applying troubleshoot-
ing approaches in the decision epoch, where re-
placement is planned in the aggregate policy, to
obtain which component to replace.

3.3.1 DBN Formulation

The original problem is simulated with a
DBN given in Figure 3, where action at is repre-
sented as a probabilistic node such that at ∈ A,
A = {dn, rc1, rc2, ..., rcI}. Solid arcs represent
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Figure 3: DBN representation of the disaggre-
gate problem

the causal relations between the components
and the observation node. They constitute the
conditional probabilities P (ot|c1t..cIt) for all t.
The dashed arcs represent temporal relations of
the components and actions between two con-
secutive time periods. They constitute the con-
ditional probabilities P (ci,t+1|cit, at). Temporal
relations are the transition probabilities of com-
ponents due to aging and replacement which are
given in Table 1.

3.3.2 Disaggregation Procedure

The disaggregation procedure takes the op-
timal policy of the aggregate POMDP model
as input. This policy is an aggregate policy in
terms of aggregate actions. It does not specify
which component to replace when it decides to
do a replacement. This is done by the disaggre-
gation procedure. It is performed by simulating
the original problem (before merge) with a DBN
represented in Figure 3. Let ε be the evidence
set containing the total evidence gathered so far.
It is accumulated by two means in every period:
one is the selected disaggregated action of the
current period and the other is the sampled ob-
servation of the next period. In each period,
if a replacement is required by the aggregate
policy, the component which has the highest ef-
ficiency is selected. This constitutes the current
disaggregated action. The efficiency measure is
defined as follows:

efit =
P (ci,t+1 = nw| ε ∪ {ot+1 = r})

πi
, (10)

where the numerator is the probability of com-
ponent i being nonworking given the up-to-date
evidence and also the condition that a red sig-
nal is observed in the next period although this
may not be the case. Appending the latter one
to the evidence indicates the component which
explains observing a red signal in the next pe-
riod. The denominator, πi, is the replacement
cost of component i and it makes the efficiency
measure to trade off component’s nonworking
probability to its replacement cost. The com-
ponent with the highest efficiency is selected to
be replaced.



4 Computational Study

The design structure given in Table 2 is used in
the computational study. Four factors are de-
termined in the experimental design. Two of
them are related with costs and the other two
are related with probabilities in the problem.
The values of each factor are seen in the related
column of the table. When observation prob-
abilities are different, probability of observing
green differs as number of faults differs for in
between states (other than the all working and
all nonworking states). As an alternative case,
invariant observation probabilities mean proba-
bility of observing a green signal is same for all
intermediate states and it is the average of the
observation probabilities of the different case.
Each combination of factor values leads to a to-

Table 2: Experimental design
Transition Working Replacement Red Observation

Probability Cost Cost Probability
Increasing Increasing High Different

Constant-low Constant Low Indifferent
Constant-high

Decreasing

tal of 32 data sets. After elimination of four
symmetric data, we have a total of 28 data sets.

For a four component dynamic system, when
components are merged into a single process
node, we have a total of 24 = 16 states and
5 actions. We try to solve the problem with an
exact POMDP solver, but it cannot be solved
exactly. Then states are aggregated into three
states such that S1 is the all working state, S3

is the all nonworking state, and S2 is the in be-
tween state (at least one working and one non-
working component exist). Actions are aggre-
gated into two actions such that A1 is doing
nothing and A2 is replacing one of the compo-
nents. Initially no weights are given to the ac-
tions in A2 while aggregating. Observation and
transition probabilities, and reward function are
aggregated accordingly as in Equations 5, 6 and
7 respectively.

After aggregating the problem into three
compound states and two compound actions,
it can be solved with an exact POMDP solver
(pomdp-solve) implementing the Witness algo-

rithm (Cassandra et al., 1994) for a finite hori-
zon of 100 periods. All data sets are also solved
with an approximate POMDP solver, ZMDP
software package (Smith, 2007), for a finite hori-
zon of 100 periods which finds upper bounds for
the cost function and gives POMDP policies as
an output. The ZMDP policy file is also sim-
ulated with the DBN in Figure 3 to achieve a
complete solution as in the case of the disaggre-
gate solution. Both disaggregation and ZMDP
simulation are replicated 50 times and the aver-
age cost of these is reported with their standard
deviations in Table 3.

We observe that, in data sets d01-d04, d08,
d10, d11, d15-d18, d22, d24 and d25, only the
first component is replaced in all replacement
times and replications. So, a better aggregation
can be possible by giving more weights to the
replacement actions of components which are
replaced more frequently and giving no weights
to the replacement actions whose components
are not even replaced. So we re-aggregate the
data sets having unequal transition probabili-
ties or unequal replacement costs by giving the
average number of replacements of each compo-
nent as its weight to the corresponding replace-
ment action. Data sets d06, d07, d13, d14, d20,
d21, d27 and d28 have equal transition prob-
abilities and replacement costs, so giving un-
equal weights do not lead to different aggrega-
tions other than the ones already constituted.
The computational results of the weighted ag-
gregation are also tabulated in Table 3.

The results show that average cost of most
of the re-aggregated data sets improve (d01-
d04, d08-d11, d15, d16, d22-d25) or remain the
same (d05, d12, d19 and d26) except data sets
d17 and d18 which have performed already well
with the equal weighted aggregation. One can
make new aggregations of replacement actions
with the new average number of replacements
of components. This goes on until a cycle of
aggregate policies is determined, which means
no new solutions will be available to the deci-
sion maker. However, there is no guarantee that
disaggregation results will improve every time a
new aggregation is performed as in the case of
data sets d17 and d18.



Table 3: Computational results
Equal Weighted ZMDP t-test

Set Disagg (std) Disagg (std) Sim.Avg (std) p-value

d01 1497.3 (131.9) 1220.8 (103.6) 854.7 (129.2) .0000 *
d02 1500.8 (72.27) 1308 (104.3) 1295.2 (85.96 .5046
d03 1068.4 (163.8) 717.5 (127) 605.52 (112.16) .0000 *
d04 1218.8 (84.19) 904.2 (104.4) 915.86 (110.26) .5871
d05 1308.1 (123.4) 1308.1 (123.4) 908.6 (96.46) .0000 *
d06 1479.4 (85.93) - - 1495.2 (96.77) .3901
d07 955.4 (130.8) - - 562.30 (81.95) .0000 *
d08 414.6 (41.79) 375.1 (30.73) 348.74 (42.23) .0006 *
d09 496.2 (4.11) 398.4 (22.22) 396.6 (24.65) .7021
d10 296.6 (36.54) 269.7 (44.09) 232.6 (40.46) .0000 *
d11 324.9 (25.54) 299.4 (30.49) 292.38 (33.35) .2747
d12 400.8 (43.16) 400.8 (43.16) 476.2 (.57) .0000 +
d13 554.4 (23.12) - - 495.6 (4.70) .0000 *
d14 280.3 (31.87) - - 227.7 (40.17) .0000 *
d15 1336.2 (126.1) 886.8 (95.33) 851.3 (102.4) .0761
d16 1259.7 (87.37) 878.4 (90.25) 898.8 (125.3) .3525
d17 853.26 (105.8) 924.76 (125.9) 764.66 (115.60) .0001 *
d18 873.32 (86.54) 1150.2 (105.87) 892.7 (97.9) .2958
d19 1059.8 (123.2) 1059.8 (123.2) 1120.6 (102.2) .0085 +
d20 1298.6 (103.4) - - 1306.4 (91.65) .6906
d21 853.9 (119.4) - - 690.7 (105.09) .0000 *
d22 381.38 (44.52) 315.28 (26.8) 377.1 (36.5) .0000 +
d23 496.2 (4.58) 295.7 (21.75) 303.7 (21.3) .0661
d24 238.32 (31.17) 221.3 (25.24) 242.12 (29.18) .0002 +
d25 245.16 (25.35) 236.8 (23.82) 234.94 (20.85) .6788
d26 341 (47.78) 341 (47.78) 274.4 (36.6) .0000 *
d27 501.1 (23.28) - - 494.9 (5.1) .0689
d28 242.3 (33.06) - - 236.7 (25.88) .3479

It is of interest to analyze the performance
of the two procedures in each data set in order
to understand what type of data sets our pro-
cedure is successful at. So, for each data set,
we perform hypothesis test for two samples and
use two-sided t-test to test whether the means
of simulated ZMDP cost and the best disaggre-
gation cost (with bold number) are equal or not
in each data set. The resulting p-value is given
in the table for each data set. When significance
level is taken as 0.05, data sets with p-value less
than 0.05 are marked in the table with * or + in-
dicating that the simulated ZMDP cost is signif-
icantly less than the disaggregation cost or vice
versa, respectively. There are 15 data sets out of
28 where the two methods significantly differ in
terms of cost values. 11 of these data sets belong
to the case where simulated ZMDP cost is sig-
nificantly lower than disaggregate cost whereas
4 of them belong to the case where disaggre-
gate cost is significantly lower. If we look at the
distribution of 11 data sets where ZMDP cost
is significantly lower than disaggregate cost, we
will see that 8 of them lie within the data sets
with different observation probabilities for the

in between states (d01-d14). Alternatively only
1 out of 4 data sets where disaggregate cost is
significantly lower than simulated ZMDP cost,
lies in d01-d14. These results give insight that
our solution procedure is more successful at the
data sets whose observation probabilities of the
aggregated states are invariant.

One may be interested in obtaining the over-
all performance of the proposed procedure by
using one-sided paired t-test. Experimental re-
sults already show that there are plenty of in-
stances where our procedure is outperformed
by the simulated ZMDP. However simulated
ZMDP has two drawbacks: First, in order to
run ZMDP in a finite horizon, time information
is added explicitly into the state information.
So, when the number of components increase,
state space and hence size of the ZMDP input
file grows exponentially. Second, when ZMDP
is run, it gives an upper bound for the cost
function. However to obtain full solutions as
in the case of our procedure, we also simulate
the ZMDP output file. This requires more com-
putational time than simulating the aggregate
model of our procedure.



5 Conclusion

We tackle the maintenance problem of a com-
plex system where system components are
partially observable via indirect signals, and
present a hierarchical solution procedure to
solve it. The complex POMDP problem is ag-
gregated in terms of states and actions such that
it can be solved exactly and the optimal pol-
icy is implemented on the system by simulat-
ing it with DBNs. Our solutions are compared
with the solutions of the approximate POMDP
solver, which uses full information state space,
on 28 data sets. The results show that when
observation probabilities are invariant among
the states aggregated into the same compound
state, our procedure performs better.

In the aggregation, we prefer to aggregate
the states into three compound states which
are all working, all nonworking and in between
states; and the actions into two compound ac-
tions which are doing nothing and doing a re-
placement. A POMDP with three states and
two actions can always be solved exactly. How-
ever, significant probabilistic information can
be lost. The disaggregation result can be at
most as good as the quality of the aggregate
policy. The action aggregation can be improved
by giving weights to replacement actions while
the state aggregation is harder to improve. The
average number of replacements of components
obtained from the disaggregation solution can
be used as weights, however determining the
appropriate weights for action aggregation from
the parameters of the problem will be a better
way since this will reduce the number of ag-
gregations and hence the effort. This can be a
future study.
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