
All Roads Lead To Rome—New Search Methods for Optimal
Triangulation

Thorsten J. Ottosen
Department of Computer Science, Aalborg University, Denmark

nesotto@cs.aau.dk

Jǐŕı Vomlel
Institute of Information Theory and Automation of the AS CR, The Czech Republic

vomlel@utia.cas.cz

Abstract

To perform efficient inference in Bayesian networks, the network graph needs to be triangu-
lated. The quality of this triangulation largely determines the efficiency of the subsequent
inference, but the triangulation problem is unfortunately NP-hard. It is common for ex-
isting methods to use the treewidth criterion for optimality of a triangulation. However,
this criterion may lead to a somewhat harder inference problem than the total table size
criterion. We therefore investigate new methods for depth-first search and best-first search
for finding optimal total table size triangulations. The search methods are made faster by
efficient dynamic maintenance of the cliques of a graph. The algorithms are mainly sup-
posed to be off-line methods, but they may form the basis for efficient any-time heuristics.
Furthermore, the methods make it possible to evaluate the quality of heuristics precisely.

1 Introduction

We consider the problem of finding optimal cost
triangulations of Bayesian networks. We solve
this problem by searching the space of all possi-
ble triangulations. This search is carried out by
trying all possible elimination orders and choos-
ing one of those that have a minimal total ta-
ble size. Of all commonly-used optimality cri-
teria, the total table size yields the most ex-
act bound of the memory and time requirement
of the probabilistic inference. However, finding
optimal triangulations is difficult: computing
a minimum fill-in is NP-complete (Yannakakis,
1981) and finding a triangulation with minimal
total table size is NP-hard (Wen, 1990).

There are several issues that motivates an in-
vestigation of this problem. Since the prob-
lem is NP-hard, we cannot expect the prob-
lem to be solvable in a reasonable amount of
time for large networks. However, triangulation
can always be performed off-line on specialized
servers and saved for use by the inference al-

gorithms. This is important as intractability
or simply poor performance is a major obsta-
cle to more wide-spread adoption of Bayesian
networks and decision graphs in statistics, en-
gineering and other sciences. Furthermore, effi-
cient off-line algorithms allow us to evaluate the
quality of on-line methods which can otherwise
only be compared to other on-line methods. An
off-line method, on the other hand, can effec-
tively answer whether the subsequent inference
is tractable. Finally, off-line methods can often
be turned into good any-time heuristics.

Previous research on triangulation has also
used best-first search (Dow and Korf, 2007) and
depth-first search (Gogate and Dechter, 2004),
however, the optimality criteria is the treewidth
of the graph and so the found triangulation is
(in the best case) only guaranteed to be within
a factor of n (n being the number of vertices
of the graph) from the optimal total table size
triangulation—this factor could mean the dif-
ference between an intractable and a tractable
inference. With the treewidth optimality cri-

terion, one can continuously apply the prepro-
cessing rules of (Bodlaender et al., 2005), but
for the total table size criterion we can (so far)
only remove simplicial vertices which makes this
problem considerably harder. The seminal idea
of divide-and-conquer triangulating using de-
composable subgraphs dates back to (Tarjan,
1985). Leimer refines this approach such that
the generated subgraphs are not themselves de-
composable (i.e., they are maximal prime sub-
graphs and this unique decomposition is de-
noted a maximal prime subgraph decomposi-
tion) (Leimer, 1993). Basically, this means
that the problem of triangulating a graph G is
no more difficult than triangulating the largest
maximal prime subgraph of G. This decompo-
sition is exploited in (Flores and Gámez, 2003).

In (Shoikhet and Geiger, 1997) a dynamic
programming algorithm is given based on de-
compositions by minimal separators, and again
the optimality criterion is treewidth. As noted
by its authors, the method may be adopted to
yield an optimal total table size triangulation as
well. Finally, an overview of triangulation ap-
proaches is given in (Flores and Gámez, 2007).

2 Preliminaries

We shall use the following notation and defini-
tions. G = (V,E) is an undirected graph with
vertices V = V(G) and edges E = E(G). For
a set of edges F, V(F) is the set of vertices
{u, v : {u, v} ∈ F}. An undirected graph is
triangulated (or chordal) if every cycle of length
greater than 3 has a chord. For example, in Fig-
ure 1 the graph on the left is not triangulated
whereas the graph on the right is triangulated.
For W ⊆ V, G[W] is the subgraph induced by
W. A triangulation of G is a set of edges T such
that T ∩ E = ∅ and the graph H = (V,E ∪ T)
is triangulated. We denote the set of all trian-
gulations of a graph G for T (G).

Two vertices u and v are connected in G if
there is an edge between them. A graph G is
complete if all pairs of vertices {u, v} (u 6= v)
are connected in G. A set of vertices W ⊆ V
is complete in G if G[W] is a complete graph.
The neighbours nb(v,G) of a vertex v ∈ V is

the set W ⊆ V such that each u ∈ W is con-
nected to v. The family fa(v,G) of a vertex v
is the set nb(v,G) ∪ {v}, and the neighbours
and family of a set of vertices is defined sim-
ilarly. The elimination of a vertex v ∈ V of
G = (V,E) is the process of removing v from G
and making nb(v,G) a complete set. This pro-
cess induces a new graph H = (V \ {v},E ∪ F)
where F is the set of fill-in edges. For exam-
ple, in Figure 1 (left), eliminating the vertex 6
induces the two fill-in edges shown with dotted
edges in the adjacent graph. If F = ∅, then v
is a simplicial vertex. An elimination order of
G = (V,E) is a bijection f : V → {1, 2, . . . , |V|}
prescribing an order for eliminating all vertices
of G. If all vertices are eliminated in G accord-
ing to an elimination order f , the union of all the
fill-in edges produced induces a triangulation of
G. In this way each triangulation T of G corre-
sponds to at least one elimination order, and we
may explore the space T (G) by investigating all
possible elimination orders.

Given G = (V,E), a set of vertices C ⊆ V
is a clique if it is a maximal complete set and
C(G) is the set of all cliques in G. The table size
of a clique C is given by ts(C) =

∏
v∈C |sp(v)|

where sp(v) denotes the state space of the vari-
able corresponding to v in the Bayesian net-
work. Finally, the total table size of a graph H
is given by tts(H) =

∑
C∈C(H) ts(C).

Triangulation algorithms aim at minimizing
different criteria. The most common are the
fill-in, the treewidth and the total table size cri-
teria. The fill-in criterion requires the trian-
gulated graph to have the minimum total num-
ber of fill-in edges. The treewidth of a graph
is the size of the largest clique minus one, and
the treewidth criterion requires the triangulated
graph to have minimum treewidth. The total ta-
ble size criteria requires the triangulated graph
to have the minimum total table size. Com-
monly seen triangulation heuristics include min-
fill and min-width which both greedily pick the
next vertex to eliminate based on a local score.
In min-fill a vertex is chosen if its elimination
leads to the fewest fill-in edges; in min-width a
vertex is chosen if it has the fewest number of
neighbours.

1 2

3 4 5

6

1 2

3 4 5

6

1 2

3 4 5

6

1 2

3 4 5

6

Figure 1: Example of the fill-in edges and partially triangulated graphs induced by an elimination
order that starts with the sequence 〈6, 4〉: the dotted edges are fill-in edges. Left: the initial graph.
Middle left: the fill-in edges induced by eliminating vertex 6. Middle right: the fill-in edges induced
by eliminating vertex 4. Right: the final triangulated graph.

3 The Search Space for
Triangulation Algorithms

Our goal is to explore the space T (G) encoding
all possible ways to triangulate a graph G in.
To do this, we generate a search graph dynami-
cally (on-demand) where each node corresponds
to a subset of V being eliminated from G, and
where each edge is labelled with the particular
vertex that has been eliminated. (Note that we
exclusively use the term ”node” for vertices in
the search graph whereas the term ”vertex” is
used exclusively for vertices in the undirected
graph being triangulated.) In the start node s
no vertices have been eliminated, and in a goal
node t all vertices have been eliminated and the
graph G has been triangulated.

Since we are seeking optimal total table size
triangulations we also need to associate this
quantity with each node. By definition, the to-
tal table size is easy to compute if we know the
cliques of the partially triangulated graph, and
therefore we also need to associate this graph
with each node. Below we give a small example
of a path in the search space—in Section 5 we
shall explain the algorithms in detail.

Example 1. Consider the graphs in Figure 1
and assume that all variables (in the original
Bayesian network) are binary. The graph asso-
ciated with the start node s would be the graph
on the left and this graph has a total table size

of 22 + 22 + 22 + 23 + 23 = 28.

The graph associated with a successor nodem
of s (corresponding to the elimination of vertex
6) would correspond to the graph in the middle
(left) (including dotted edges) with total table
size 22 + 22 + 23 + 24 = 32.

And the successor node of m (corresponding
to the elimination of vertex 4) would be asso-
ciated with graph on the right, which is also a
goal node, with total table size 23+24+24 = 40.
Note that when introducing fill-in edges, we
must not add edges to vertices that has already
been eliminated—this is why this step does not
add the edge {2, 6} even though the vertices are
both neighbours of vertex 4.

Observe that the total table size of a node
is never higher than the total table size of its
successor node(s). This implies that the total
table size associated with any non-goal node n
is a lower-bound on the total table size of any
goal node that may be discovered from n. This
property guarantees that the algorithms in Sec-
tion 5 are admissible.

4 Dynamic Clique Maintenance

To compute the cliques of a graph associated
with a node in the search graph, we may use
a standard algorithm for this task, for exam-
ple, the well-known Bron-Kerbosch algorithm
(Cazals and Karande, 2008). However, as we

can see from the above example, each path in
the search graph corresponds to a sequence of
graphs where the difference between adjacent
graphs is quite small. Therefore we may exploit
this similarity among adjacent graphs to avoid
the quite expensive recomputation of the cliques
and total table size of the graphs.

(Stix, 2004) investigated this problem, how-
ever, his method leads to many redundant com-
putations when the added edges appear close
together (as is the case for fill-in edges). There-
fore we give a new algorithm that performs sig-
nificantly faster for this type of update.

The general idea behind this method is sim-
ple: instead of searching for cliques in the whole
graph, simply run a clique enumeration algo-
rithm on a smaller subgraph where all the new
cliques appear and existing cliques disappear.
This algorithm for dynamic clique maintenance
is presented as Algorithm 1, and as a side-effect
it also updates the total table size and the cur-
rent graph. This implies that the total table
size does not need to be computed from scratch
either. In our case we employ Bron-Kerbosch
for the local search in FindCliques(·). Its cor-
rectness follows from the following result.

Theorem 1. (Ottosen and Vomlel, 2010). Let
G = (V,E) be an undirected graph, and let G′ =
(V,E ∪ F) be the graph resulting from adding
a set of new edges F to G. Let U = V(F).
The cliques of C(G′) can be found by remov-
ing the cliques from C(G) that intersect with U
and adding cliques of G′[fa(U,G′)] that intersect
with U.

(Xiang and Lee, 2006) describes a set of vertices
called a cruz which is central to their method
for learning. The method described above may
also be used to efficiently determine the cruz.

5 Optimal Total Table Size
Triangulation Algorithms

We have now shown how we may efficiently com-
pute the total table size for each successor m of
a node n in the search space T (G), and we have
furthermore established that the total table size
for a node n is a lower-bound of any possi-
ble triangulation associated with the set of goal

Algorithm 1 Incremental maintenance of
cliques and total table size by local search

1: procedure IncrUpdate(&G,&C ,&tts,F)
2: Input: A graph G = (V,E),
3: the set of cliques C of G,
4: the total table size tts of G, and
5: the set of new edges F.
6: Set G = (V,E ∪ F)
7: Let U = V(F)
8: Let Cnew = FindCliques(G, fa(U,G))
9: for all C ∈ C do . Remove old cliques

10: if C ∩U 6= ∅ then
11: Set tts = tts - ts(C)
12: Set C = C \ {C}
13: end if
14: end for
15: for all C ∈ Cnew do . Add new cliques
16: if C ∩U 6= ∅ then
17: Set tts = tts + ts(C)
18: Set C = C ∪ {C}
19: end if
20: end for
21: end procedure

node reachable from n. Given this, we may use
standard algorithms like best-first search and
depth-first search to explore the search space
and at the same time be guaranteed that the
algorithms terminate with an optimal solution.

Best-first search is an algorithm that succes-
sively expands nodes with the shortest distance
to the start node until a goal node has a shorter
path than all non-goal nodes. The benefit of
the best-first strategy is that we may avoid
exploring paths that are far from the optimal
path. The disadvantage of a best-first strategy
is that the algorithm must keep track of a fron-
tier (or fringe) or nodes that still needs to be
explored. Depth-first search, on the other hand,
explores all paths in a depth-first manner and
therefore uses only Θ(|V|) memory for a graph
G = (V,E). However, depth-first search is typ-
ically forced to explore more paths than best-
first search.

To compute a cost for each path in the search
graph, we associate the following with each node
n:

1. H = (V,E ∪F): the original graph with all
fill-in edges F accumulated along the path
to n from the start node s.

2. R: the remaining graph H[V \W] where W
are the vertices of G eliminated along the
path from s to n.

3. C : the set of cliques for H, C(H).

4. tts: the total table size for the graph H.

5. L: a list of vertices describing the elimina-
tion order.

To maintain tts(H) efficiently we need C(H)
which in turn requires H, and we saw how this
can be done in Section 4 . The graph R makes
it easy to determine if the graph H is trian-
gulated and may be computed on demand to
reduce memory requirements.

In the worst case, the complexity of any best-
first search method isO(β(|V|)·|V|!) (where β(·)
is a function that describes the per-node over-
head) because we must try each possible elim-
ination order. However, it is well known that
the remaining graph H[V \W] is the same no
matter what order the vertices in W have been
eliminated in, so we can use coalescing of nodes
and thus reduce the worst case complexity to
O(β(|V|) · 2|V|) (Darwiche, 2009).

For depth-first search the complexity is often
thought to remain at Θ(γ(|V|) · |V|!), however,
at the expense of memory we may also apply
coalescing for pruning purposes. Hence, depth-
first search can be made to run in O(γ(|V|)·|V|!)
time using O(2|V|) memory, but the hidden con-
stants will be much smaller in this case com-
pared to best-first search.

Both γ(|V|) and β(|V|) take at least O(|V|3)
time as they are dominated by the removal of
simplicial vertices (the lookup into the coalesc-
ing map takes O(|V|) time due to the compu-
tation of the hash-key, and the priority queue
look-up for best-first search may take O(|V|)
time since the queue may become exponentially
large). Getting a more precise bound on the two
functions is difficult as the complexity of main-
taining the cliques and total table size depends
very much on the graph being triangulated.

In Algorithm 2 we describe the basic best-
first search with coalescing, and depth-first

Algorithm 2 Best-first search with coalescing

function TriangulationByBFS(G)
Let s = (G,G, C(G), tts(G), 〈〉)
EliminateSimplicial(s)
if |V(s.R)| = 0 then

return s
end if
Let map = ∅ . Coalescing map
Let O = {s} . The open set
while O 6= ∅ do

Let n = arg min
x∈O

x.tts

if |V(n.R)| = 0 then
return n

end if
Set O = O \ {n}
for all v ∈ V(n.R) do

Let m = Copy(n)
EliminateVertex(m, v)
EliminateSimplicial(m)
if map[m.R].tts ≤ m.tts) then

continue
end if
Set O = O \ {map[m.R]}
Set map[m.R] = m
Set O = O ∪ {m}

end for
end while

end function

search with coalescing and pruning based on the
currently best path is described in Algorithm
3. The procedure EliminateVertex(·) simply
eliminates a vertex from the remaining graph R
and updates the cliques and total table size of
the partially triangulated graph H (see Section
4). The procedure EliminateSimplicial(·)
removes all simplicial vertices from the remain-
ing graph.

6 Results

In this section we describe experiments with the
optimal methods as well as several heuristics de-
rived from these. For that purpose we have gen-
erated 50 random graphs with varying size and
density. In this paper we have only performed
experiments on bipartite graphs—these graphs

Algorithm 3 Depth-first search with
coalescing and upper-bound pruning

function TriangulationByDFS(G)
Let s = (G,G, C(G), tts(G), 〈〉)
EliminateSimplicial(s)
if |V(s.R)| = 0 then

return s
end if
Let best = MinFill(s) . Best path
Let map = ∅ . Coalescing map
ExpandNode(s, best,map)
return best

end function
procedure ExpandNode(n,&best,&map)

for all v ∈ V(n.R) do
Let m = Copy(n)
EliminateVertex(m, v)
EliminateSimplicial(m)
if |V(m.R)| = 0 then

if m.tts < best.tts then
Set best = m

end if
else

if m.tts ≥ best.tts then
continue

end if
if map[m.R].tts ≤ m.tts) then

continue
end if
Set map[m.R] = m
ExpandNode(m, best,map)

end if
end for

end procedure

result from the application of rank-one decom-
position to BN2O networks—see (Savicky and
Vomlel, 2009) for details. The main reason for
using these graphs is that they are among the
most difficult to triangulate. This is because (1)
moralization should not be applied after using
rank-one decomposition, and (2) bottom and
top layers are not connected. Thereby the ini-
tial graph is sparser than usual which gives tri-
angulation algorithms more freedom (in terms
of choosing fill-in edges) when searching for a
triangulation.

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

B
F

S
 T

im
e

DFS Time

Figure 2: Comparison of the running time of
best-first search and depth-first search. Both
algorithms terminate with an optimal triangu-
lation (values above the line indicate depth-first
search was faster).

We have performed two different tests on this
dataset: (1) a comparison of depth-first search
and best-first search, and (2) a comparison be-
tween heuristic methods. For Test 2 we have
implemented the following heuristic methods:

(a) Limited-branching depth-first search. This
means that we only expand the n succes-
sors of a node which have the lowest total
table size. For example, ”limited-branch-5”
expands at most five successors per node.

(b) Limited memory best-first search. Here we
limit the size of the open set O to some
fixed value n by removing the worst nodes
when the set is considered full. For exam-
ple, ”limited-mem-10k” has at most 10.000
nodes in its open set.

(c) The min-width and min-fill heuristics im-
plemented so that a successor node is gen-
erated for all ties instead of breaking ties
randomly. We refer to these algorithms as
min-width* and min-fill*, respectively.

The results from Test 1 are given in Figure 2.
It appears that best-first search performs better
when the computational time is large.

Table 1: Summary statistics for exhaustive
search algorithms. Each row summarizes the
mean time for graphs with n vertices. The value
in parenthesis in the first column indicates the
number of graphs of that size.

Vertices DFS BFS

20 (10) 0.3s 0.3s
30 (20) 9.1s 17.5s
40 (10) 30.6s 31.8s
50 (5) 30.4s 33.0s
60 (5) 591.7s 607.0s
% Fastest 71 37

Table 2: Results for heuristic algorithms. The
first column describes the percentage of graphs
that were triangulated optimally, and the sec-
ond column contains the maximum percent-wise
deviation from the total table size of an optimal
triangulation. The third column indicates total
time for triangulating all 50 graphs.

% op. % dev. time

min-width* 82 23,916 1s
min-fill* 84 1,322 1s
lim.-br.-2 DFS 94 53 83s
lim.-br.-3 DFS 98 27 270s
lim.-br.-4 DFS 100 0 512s
lim.-mem-100 BFS 96 2 2234s
lim.-mem-1k BFS 100 0 6447s

In Table 1 we give summary statistics for this
test. We have computed the p-value of the two-
sided Wilcoxon two-sample test of the null hy-
pothesis that the distribution of depth-first time
minus best-first time is symmetric about 0. The
p-value is 0.001069, which means that the null
hypothesis is rejected, that is, differences are
significant (in favor of depth-first search).

The results from Test 2 are given in the Table
2. Here we have run the heuristics on the 50
graphs from Test 1. From this we can conclude
that min-fill and min-width are quite often good
heuristics, but that their induced search spaces
are too small to avoid triangulations that are
far from optimal. The new heuristics seem to
avoid this pitfall.

Notice that the BN2O networks only have bi-
nary variables. Therefore min-width actually
corresponds to the commonly used min-weight
heuristic. The graph where min-width* found
an exceedingly poor triangulation has 40 ver-
tices and a density around 0.36. The total ta-
ble size for min-width* was 595, 634, 176, and
this means that no stochastic (breaking ties ran-
domly) min-width heuristic can yield a triangu-
lation that requires below some 2.4 GB of mem-
ory (assuming 4 bytes for a float). Contrast
this with the optimal triangulation which leads
to a memory requirement of only 10 MB.

7 Discussion

The fact that depth-first search came out as
the fastest algorithm must be considered a sur-
prise. We believe that the main reason for this
is that the pruning via the coalescing map turns
out to work quite well—this pruning is the di-
rect cause of the change in complexity from
Θ(γ(|V|) · |V|!) to O(γ(|V|) · |V|!). The exper-
iments indicate that best-first search actually
runs in O(γ(|V|) · 2|V|) time. Secondly, it is
worth mentioning that depth-first search only
needs very few (otherwise expensive) free-store
allocations. To further improve the pruning by
the coalescing map, then we should consider
a hybrid best-first-depth-first scheme where we
explore the most promising paths earlier. In
light of this discussion we believe depth-first
search should be reconsidered also for the min-
imum treewidth criterion.

8 Conclusion

The contributions of this paper are three-fold.
First, we have described new methods for find-
ing optimal total table size triangulations of
undirected graphs. The methods rely heavily on
efficient dynamic maintenance of the cliques and
total table size of a graph. These methods are
mainly supposed to be used off-line, but they
may also be transformed into any-time heuris-
tics.

Secondly, experiments show that depth-first
search is faster than best-first search—this was
quite unexpected. The main reason is that we

use pruning based on a coalescing map which
lowers the time complexity from Θ(γ(n) · n!)
to O(γ(n) · n!) (n being the number of ver-
tices in the graph and γ(n) being the per-node
overhead). From the experiments we can infer
that this pruning is so effective that depth-first
search actually runs in O(γ(n)·2n) time. There-
fore we believe it will be beneficial to recon-
sider depth-first search for triangulation with
the minimum treewidth criterion.

Third, we have examined the quality of com-
mon heuristic algorithms on a set of graphs
that are quite difficult to triangulate. The ex-
periments show that these heuristics will never
be able to guarantee good triangulations on all
types of graphs, for example, on one model the
min-width (and min-weight) heuristic would re-
turn a triangulation that requires at least 2.4
GB of memory whereas the optimal solution re-
quires only 10 MB. This shows that off-line tri-
angulation methods could be required in some
cases.

Acknowledgement

The authors would like to thank the three
anonymous reviewers for their helpful com-
ments.

J. Vomlel was supported by the Ministry of
Education of the Czech Republic through grants
1M0572 and 2C06019 and by the Czech Science
Foundation through grants ICC/08/E010 and
201/09/1891.

References

Hans L. Bodlaender, Arie M.C.A. Koster, and Frank
van den Eijkhof. 2005. Preprocessing rules for
triangulation of probabilistic networks. Compu-
tational Intelligence, 21:286–305.

F. Cazals and C. Karande. 2008. A note on the
problem of reporting maximal cliques. Theoretical
Computer Science, 407(1-3):564–568, November.

Adnan Darwiche. 2009. Modelling and Reasoning
with Bayesian Networks. Cambridge University
Press.

P. Alex Dow and Richard E. Korf. 2007. Best-first
search for treewidth. In AAAI’07: Proceedings of
the 22nd national conference on Artificial intelli-
gence, pages 1146–1151. AAAI Press.

M. Julia Flores and José A. Gámez. 2003. Tri-
angulation of Bayesian networks by retriangula-
tion. International Journal of Intelligent Systems,
18:153–164.

M. Julia Flores and José A. Gámez. 2007. A review
on distinct methods and approaches to perform
triangulation for Bayesian networks. Advances in
Probabilistic Graphical Models, pages 127–152.

Vibhav Gogate and Rina Dechter. 2004. A complete
anytime algorithm for treewidth. In Proceedings
of the Proceedings of the Twentieth Conference
Annual Conference on Uncertainty in Artificial
Intelligence (UAI-04), pages 201–208, Arlington,
Virginia. AUAI Press.

Hanns-Georg Leimer. 1993. Optimal decomposition
by clique separators. Discrete Math., 113(1-3):99–
123.

Thorsten J. Ottosen and Jǐŕı Vomlel. 2010. Honour
thy neighbour—clique maintenance in dynamic
graphs. In Proceedings of the Fifth European
Workshop on Probabilistic Graphical Models.

Petr Savicky and Jǐŕı Vomlel. 2009. Triangulation
heuristics for BN2O networks. In C. Sossai and
G. Chemello, editors, Proceedings of the 10th Eu-
ropean Conference on Symbolic and Quantitative
Approaches to Reasoning with Uncertainty, pages
566–577. Springer.

Kirill Shoikhet and Dan Geiger. 1997. A practical
algorithm for finding optimal triangulations. In
AAAI’97: Proceedings of the 14th national con-
ference on Artificial intelligence, pages 185–190.
AAAI Press.

Volker Stix. 2004. Finding all maximal cliques in dy-
namic graphs. Comput. Optim. Appl., 27(2):173–
186.

Robert E. Tarjan. 1985. Decomposition by clique
separators. Discrete Mathematics, 55(2):221 –
232.

Wilson Wen. 1990. Optimal decomposition of be-
lief networks. In Proceedings of the Sixth Con-
ference on Uncertainty in Artificial Intelligence
(UAI-90), pages 209–224, New York, NY. Else-
vier Science.

Y. Xiang and J. Lee. 2006. Learning decomposable
markov networks in pseudo-independent domains
with local evaluation. Mach. Learn., 65(1):199–
227.

Mihalis Yannakakis. 1981. Computing the mini-
mum fill-in is NP-complete. SIAM Journal on
Algebraic and Discrete Methods, 2(1):77–79.

