
Honour Thy Neighbour—Clique Maintenance in Dynamic Graphs

Thorsten J. Ottosen
Department of Computer Science, Aalborg University, Denmark

nesotto@cs.aau.dk

Jǐŕı Vomlel
Institute of Information Theory and Automation of the AS CR, The Czech Republic

vomlel@utia.cas.cz

Abstract

Whenever objects and their interaction is modelled via undirected graphs, it is often of
great interest to know the cliques of the graph. For several problems the graph changes
frequently over time, and we therefore seek methods for updating the information about
the cliques in a dynamic fashion to avoid expensive recomputations. This dynamic problem
was investigated by Stix, and in this paper we derive a new simple method based on the
Bron-Kerbosch algorithm that compares favourably to Stix’ approach. The new approach
is generic in the sense that it can be used with other algorithms than just Bron-Kerbosch.
The applications include fuzzy clustering and optimal triangulation of Bayesian networks.

1 Introduction

We consider the problem of maintaining the set
of cliques of a dynamic undirected graph. The
graph is dynamic in the sense that edges can
be removed and added, but the set of vertices
is invariant. When we add a new set of edges,
we call the problem incremental, and when we
remove a set of edges, we call the problem decre-
mental. Finding all the cliques of a static graph
is a hard problem: the clique decision problem
is NP-complete (Karp, 1972) and listing all the
cliques may require exponential time as there
exists graphs with exponentially many cliques
(Moon and Moser, 1965)—albeit it is solvable
in polynomial time for many classes of graphs.
However, in this work we shall consider the ini-
tial set of cliques for given (several well-known
algorithms exists for this purpose).

Previous research has been motivated by
fuzzy clustering (Stix, 2004), but we have an-
other application in mind. Specifically, our
motivation is to find optimal triangulations of
Bayesian networks with respect to the total
table size by using a best-first or depth-first
search. This requires a lower bound on the total

table size for which we may use the total table
size of the current partially triangulated graph.
In turn, this requires that we know the cliques of
the current graph. A detailed description of the
new best-first and depth-first approach to trian-
gulation can be found in (Ottosen and Vomlel,
2010).

We shall use the following notation and defi-
nitions. G = (V,E) is an undirected graph with
vertices V = V(G) and edges E = E(G). For
a set of edges F, V(F) is the set of vertices
{u, v : {u, v} ∈ F}. For W ⊆ V, G[W] is the
subgraph induced by W. Two vertices u and v
are connected in G if there is an edge between
them. A graph G is complete if all pairs of ver-
tices {u, v} (u 6= v) are connected in G. A set
of vertices W ⊆ V is complete in G if G[W] is a
complete graph. If W is complete and no com-
plete set U exists such that W ⊂ U, then W
is a clique. (Remark: note that any complete
set is sometimes called a clique; then what we
defined as a clique is called a maximal clique.)
The set of all cliques of a graph is denoted
C(G) and the set of all cliques that intersects
with a set of vertices W is denoted C(W,G).
For a single vertex v we also allow the notation

1 2

3 4

5 6

1 2

3 4

5 6

Figure 1: Left: The initial graph G = (V,E).
Right: The updated graph G′. We have C(G) =
E and C(G′) = {{1, 2, 3, 4}, {3, 5, 6}, {3, 4, 6}}.
So in this example we have RC(G,G′) = C(G)
and NC(G,G′) = C(G′).

C(v,G). The neighbours of a set of vertices W
are those vertices from V\W that are connected
to at least one vertex v ∈W and we write this
as nb(W,G). Similarly, fa(W,G) is the family
of W in G, that is, the set nb(W,G) ∪ {W}.
As usual we allow the notation nb(v,G) and
fa(v,G). A vertex v is simplicial if nb(v,G) is
complete. If G′ = (V,E ∪ F) is the graph re-
sulting from adding a set of new edges F to G,
then RC(G,G′) = C(G) \ C(G′) is the set of re-
moved cliques, and NC(G,G′) = C(G′)\C(G) is
the set of new cliques. Figure 1 illustrates these
concepts. Finally, a complete set of vertices C
in G′ is called a clique candidate for G′.

2 Stix’ Approach To Clique
Maintenance

Stix observed that it was somewhat expensive
to recompute all cliques of a graph given that
the graph had only changed slightly. Therefore
Stix derived the approach explained below and
showed that it did indeed out-perform a full re-
computation scheme (Stix, 2004).

Stix’ approach works by adding (removing)
one edge at a time. To add (remove) a set of
edges, the technique is simply applied once for
each edge. The technique (both for incremental
and decremental problems) may be summarized
as follows: (1) Let G = (V,E) be an undirected
graph, and let G′ = (V,E ∪ {{v,w}}). (2) Ini-

tially let C = C(G). (3) Generate a set of clique
candidates K for the updated graph G′. (4)
Add/remove a candidate C ∈ K to/from C de-
pending on whether it is a clique in G′. (5) In
the end, C equals C(G′)

The check in step 4 is shown in Algorithm
1 where we have improved Stix’ approach by
only considering the neighbours nb(C,G′) of a
clique candidate C (notice that this algorithm
should be called with the updated graph G′ as
its second argument).

Stix’ algorithm is based on the following the-
orem:

Theorem 1. (Stix, 2004) Let G = (V,E) be an
undirected graph, and let G′ = (V,E∪{{v,w}})
be the graph after adding the edge {v,w}. Then

1. All cliques of C(G) that do not contain v
or w are in C(G′).

2. For all A ∈ C(v,G) and for all B ∈ C(w,G)
we have

(a) L = A∩B∪{v,w} is a clique candidate
for G′.

(b) |A \B| = 1 =⇒ A 6∈ C(G′); otherwise
A is a clique candidate for G′.

(c) |B \A| = 1 =⇒ B 6∈ C(G′); otherwise
B is a clique candidate for G′.

3. The set C(G′) is fully determined by state-
ment (1) and by inspecting all the clique
candidates of statement (2).

Stix’ algorithm with several improvements is
presented as Algorithm 2. Notice that the first
part of condition 2(b) and 2(c) is not checked in
Algorithm 2. We conducted experiments with
these conditions being checked, but found it to
be about 40% slower. Furthermore, we accu-
mulate clique candidates in a set to reduce the
number of calls to IsClique(·).

Next we illustrate how Stix’ algorithm work
in a small example.

Example 1. Consider the graph in Figure 2 on
the left which we want to update with the set
of edges {{3, 4}, {3, 5}}. When adding the edge
{3, 4}, line 7-13 in Stix’ algorithm combines the
two sets of cliques C(3,G) = {{1, 3}, {3, 6}}

Algorithm 1 Verifying a complete set C is a
clique (improved version)

1: function IsClique(C,G)
2: Input: A non-empty, complete set of
3: vertices C, and a graph G.
4: for all v ∈ nb(C,G) do
5: if C ⊆ nb(v,G) then
6: return false
7: end if
8: end for
9: return true

10: end function

and C(4,G) = {{2, 4, 5}, {4, 5, 6}}. The re-
sulting set of clique candidates is then K =
{{3, 4}, {3, 4}, {3, 4}, {3, 4, 6}}. Then follows a
series of calls to IsClique(·) which determines
that the clique {3, 6}must be removed from and
the clique {3, 4, 6} must be added to C .

In the second iteration we add the edge
{3, 5} and get the set of candidates K =
{{3, 5}, {3, 5}, {3, 4, 5}, {3, 4, 5, 6}} and deter-
mine that the cliques {3, 4, 6} and {4, 5, 6} must
be removed and the clique {3, 4, 5, 6} must be
added.

The above example shows that there are two
potential performance problems with Stix’ ap-
proach when adding multiple edges:

1. Many duplicate clique candidates are gen-
erated and existing cliques are combined
multiple times, and

2. A great number of calls to IsClique(·) is
needed to prune candidates and remove old
cliques.

To overcome these problems, one might try to
generalize Stix’ theoretical results to account for
a larger set of edges being added at one time.
However, it turns out that such an approach
suffers even more from the problems above. In
the following we shall therefore present a rad-
ically different approach that overcomes both
problems.

3 Clique Maintenance by Local
Search

The general idea behind this method is sim-
ple: instead of running the Bron-Kerbosch al-

Algorithm 2 Incremental clique maintenance
by single-edge updates (improved version)

1: function EdgeBasedUpdate(C ,G,F)
2: Input: A graph G = (V,E),
3: the set of cliques C of G, and
4: the set of new edges F.
5: for all {u, v} ∈ F do
6: Let G′ = (V, E(G) ∪ {{u, v}})
7: Set K = ∅
8: for all A ∈ C(u,G) do
9: for all B ∈ C(v,G) do

10: Let C = A ∩ B ∪ {u, v}
11: Set K = K ∪ {C}
12: end for
13: end for
14: for all K ∈ C(u,G) ∪ C(v,G) do
15: if !IsClique(K,G′) then
16: Set C = C \ {K}
17: end if
18: end for
19: for all K ∈ K do
20: if IsClique(K,G′) then
21: Set C = C ∪ {K}
22: end if
23: end for
24: Set G = G′

25: end for
26: return C
27: end function

gorithm (or a similar algorithm) on the whole
graph, run it on a smaller subgraph where all
the new cliques appear and existing cliques dis-
appear. Then simply update the set of cliques
based on the vertices of the subgraph and the
newly found cliques. Algorithm 3 is the mod-
ified Bron-Kerbosch algorithm which by using
a pivot can reduce the search space (to get the
original algorithm simply exchange the iteration
in line 7 with ”for all v ∈ P do”). In our imple-
mentation we pick the pivot deterministically as
the first vertex in P because this is very easy (for
alternative pivot selection strategies see (Cazals
and Karande, 2008) and (Koch, 2001)).

To find all cliques of a graph G, the algo-
rithm should be called with the argument tu-
ple (G, ∅,V(G), ∅). However, an important ob-

1 2

3 4 5

6

1 2

3 4 5

6

1 2

3 4 5

6

Figure 2: The sequence of graphs considered by Stix’ algorithm (Algorithm 2) when adding the set
of edges {{3, 4}, {3.5}}. Left: The initial graph—a dotted edge indicates it is about to be added to
the graph. Middle: the graph after the first edge has been added. Right: The final graph.

Algorithm 3 The Bron-Kerbosch algorithm
with pivot

1: function BKWithPivot(G,R,P,X)
2: if P = ∅ and X = ∅ then
3: return {R}
4: else
5: Let C = ∅
6: Let u = SelectPivot(P,X,G)
7: for all v ∈ P \ nb(u,G) do
8: Set P = P \ {v}
9: Let Rnew = R ∪ {v}

10: Let Pnew = P ∩ nb(v,G)
11: Let Xnew = X ∩ nb(v,G)
12: Let K =
13: BKWithPivot(G,Rnew,Pnew,Xnew)
14: Set X = X ∪ {v}
15: Set C = C ∪ K
16: end for
17: Return C
18: end if
19: end function

servation is that the algorithm can also search
a subgraph G[W] for cliques by simply pass-
ing the arguments (G, ∅,W, ∅). It is this abil-
ity that our new clique maintenance algorithm
takes advantage of. Our new algorithm for dy-
namic clique maintenance is presented in Algo-
rithm 4, and explained in the next example.

Example 2. Consider again Figure 2. We im-
mediately update the graph G = (V,E) with
the set of new edges {{3, 4}, {3, 5}} (line 6).

The set U becomes {3, 4, 5} and fa(U,G′) actu-
ally equals V and so we will run Bron-Kerbosch
on the whole graph (of course, for larger graphs
this is rarely the case). Then we iterate through
the existing cliques and remove those that inter-
sect with U (line 9-13)—this step only leaves the
clique {1, 2} in C . Then we add all the cliques
found in the subgraph G′[fa(U,G′)] (line 14-18)
if and only if they intersect with U—in this case
only {1, 2} is not added. We can observe that
the clique {2, 4, 5} is both removed and added
again by the algorithm.

As the above example explains, our algorithm
sometimes removes and adds the same clique.
This is usually not a problem in practice, as
comparison of cliques is much faster than calling
IsClique(·). The correctness of the algorithm
follows from the results below.

Lemma 1. Let G = (V,E) be an undirected
graph, and let G′ = (V,E ∪ F) be the graph
resulting from adding a set of new edges F to
G. Let U = V(F). If C ∈ NC(G,G′), then
C ⊆ fa(U,G′).

Proof. Since C is a new clique, it must contain
at least two vertices from U. Since C is complete
all vertices v ∈ C\U must be connected to some
vertex in U. Hence v is a neighbour of U.

Lemma 2. Let G and G′ be given as in Lemma
1. Then C ∈ RC(G,G′) if and only if there
exists K ∈ NC(G,G′) such that C ⊂ K.

Algorithm 4 Incremental clique maintenance
by local search

1: function SetBasedUpdate(C ,G,F)
2: Input: A graph G = (V,E),
3: the set of cliques C of G, and
4: the set of new edges F.
5: Let U = V(F)
6: Let G′ = (V,E ∪ F)
7: Let Cnew =
8: BKWithPivot(G′, ∅, fa(U,G′), ∅)
9: for all C ∈ C do . Remove old cliques

10: if C ∩U 6= ∅ then
11: Set C = C \ {C}
12: end if
13: end for
14: for all C ∈ Cnew do . Add new cliques
15: if C ∩U 6= ∅ then
16: Set C = C ∪ {C}
17: end if
18: end for
19: return C
20: end function

Proof. By Lemma 1, all new cliques K ⊆
fa(U,G′). Since a newly formed clique K is the
only way to remove an existing clique C from
C(G′), the result follows.

Theorem 2. Let G,G′,F and U be given as in
Lemma 1. The cliques of C(G′) can be found by
removing the cliques from C(G) that intersect
with U and adding cliques of G′[fa(U,G′)] that
intersect with U.

Proof. We first show we add all new cliques by
considering just G′[fa(U,G′)]. By Lemma 1,
this subgraph contains all the new cliques. Fur-
thermore, any new clique C must intersect with
U; otherwise it could not contain a new edge.
Therefore all the new cliques are added.

We remove all relevant cliques if C ∈
RC(G,G′) implies C ∩ U 6= ∅. So let C ∈
RC(G,G′). Assume C ∩ U = ∅; then for each
v ∈ nb(C,G) ∩ U, C 6⊆ nb(v,G) (otherwise C
could not be a clique in G). But then no new
clique can cover C which is a contradiction to
Lemma 2. Hence C ∩ U 6= ∅, and therefore we
remove all relevant cliques.

Last we consider that we might also remove a
clique C ∈ C(G)∩C(G′). Since C ∩U 6= ∅, then
C ⊆ fa(U,G′), and C will be added again when
we add cliques from G′[fa(U,G′)] that intersect
with U.

Remark. Theorem 2 also implies that we can
apply further pruning based on the set U in Al-
gorithm 3. In particular, the for-loop in line 7
can be skipped if (R ∪P)∩U = ∅. We have not
implemented this pruning, however.

Remark. Stix derives a second approach to deal
with the decremental problem. A nice property
of our approach is that it works almost unal-
tered for this case (simply remove the set F of
edges from the graph instead of adding them).

4 Triangulation by Clique
Maintenance

An undirected graph is triangulated (or chordal)
if every cycle of length greater than 3 has a
chord. For example, the graphs in Figure 1
(left) and Figure 2 (right) are not triangulated,
whereas the graph in Figure 1 (right) is triangu-
lated. Triangulated graphs appears in remark-
ably diverse set of applications, ranging from ef-
ficient Gaussian elimination and compression in
databases to compilation of Bayesian networks
and decision graphs. It is the latter topic we
have in mind in the following discussion. First
we need some additional definitions.

The elimination of a vertex v ∈ V of G =
(V,E) is the process of removing v from G and
making nb(v,G) a complete set. This process
induces a new graph H = (V \ {v},E ∪ F)
where F is a set of fill-in edges. An elimina-
tion order of G = (V,E) is a bijection f : V →
{1, 2, . . . , |V|} prescribing an order for eliminat-
ing all vertices of G. The table size of a clique
C is given by ts(C) =

∏
v∈C |sp(v)| where sp(v)

denotes the state space of the variable corre-
sponding to v in the Bayesian network. Finally,
the total table size of a graph H is given by
tts(H) =

∑
C∈C(H) ts(C).

Triangulation algorithms aim at minimizing
different criteria. Two common criteria are the
treewidth and the total table size criteria. The
treewidth of a graph is the size of the largest

clique minus one, and the treewidth criterion
requires the triangulated graph to have mini-
mum treewidth. The total table size criteria
requires the triangulated graph to have the min-
imum total table size. Of the two, the total ta-
ble size criterion yields the most exact bound on
the time and memory requirement of the sub-
sequent inference in Bayesian networks (in par-
ticular when the domains of the variables have
different size). In this section we shall therefore
discuss how one may exploit knowledge of the
cliques of a graph to perform a triangulation
with minimum total table size. (This is an NP-
hard problem (Wen, 1990), but for probabilistic
inference we are in the fortunate situation that
the task can often be performed off-line).

It is well-known that if all vertices are elim-
inated in G according to an elimination order
f , the union of all the fill-in edges produced in-
duces a triangulation of G. In this way each
triangulation T of G corresponds to at least
one elimination order, and we may explore the
space of all possible triangulations T (G) by in-
vestigating all possible elimination orders. Even
though the search space is of size O(|V|!), coa-
lescing applies and reduces the search space to
O(2|V|) size which turns out to be tractable for
medium-sized models (say |V| ≤ 64) (Ottosen
and Vomlel, 2010).

To perform this exploration, we may gener-
ate the search graph dynamically (on-demand)
where each node corresponds to a subset of V
being eliminated from G, and where each edge
corresponds to a particular vertex being elim-
inated. (We use the term ”node” exclusively
for vertices in the search graph, and the term
”vertices” exclusively for vertices in the graph
being triangulated.) In the start node s no ver-
tices have been eliminated, and in a goal node t
all vertices have been eliminated and the graph
G has been triangulated. To compute a cost for
each path in the search graph, we associate the
following with each node n:

1. H = (V,E ∪F): the original graph with all
fill-in edges F accumulated along the path
to n from the start node s.

2. The set of cliques for H, C(H).

3. The total table size for the graph H.

To maintain tts(H) efficiently we need C(H)
which in turn requires H (as described in Sec-
tion 3). The following example shows how one
particular path in the search space is generated.

Example 3. Consider the graphs in Figure 3
where fill-in edges are indicated with dotted
lines. We follow an elimination order starting
with 〈6, 4〉. The cliques of the initial graph
may be computed using the Bron-Kerbosch al-
gorithm (Algorithm 3), and the total table size
is (assuming binary variables) 3 ·22 + 2 ·23 = 28
which is an lower estimate of the total table size
of the triangulated graph. This information is
then associated with the start node s.

Then we can make vertex 6 simplicial and
run the clique update algorithm such the set of
cliques is up-to-date. Again we can recompute
the total table size. This information is then
associated with a successor node n of s and the
edge between them is labelled with vertex 6.

When we generate a successor node m of n
(corresponding to the elimination of vertex 4),
we must not add fill-ins to already eliminated
vertices. Therefore the relevant graph corre-
sponds to Figure 3 (right) including the fill-in
edge (in particular, {2, 6} should not be a fill-in
edge). In this manner one may continue until
the graph is triangulated. In this case, this hap-
pens after we eliminate vertex 4. Finally, we
see that the cliques of the triangulated graph
are {3, 4, 5, 6}, {2, 3, 4, 5}, and {1, 2, 3}, thus its
true total table size equals 2 · 24 + 23 = 40.

5 Results

In this section we shall compare the two ap-
proaches for dynamic clique maintenance. For
that purpose we have used a set of public
Bayesian networks1. This gave us 7 real-world
undirected graphs, and for each graph we gen-
erated 10 more by successively adding 5% of the
missing (undirected) edges at random (in total
77 graphs). We have then performed two tests
on this dataset:

1http://compbio.cs.huji.ac.il/Repository/
networks.html

1 2

3 4 5

6

1 2

3 4 5

6

Figure 3: Left: The initial graph G = (V,E):
when we eliminate vertex 6, we need to add the
fill-ins {3, 4} and {3, 5}. Right: The graph af-
ter adding fill-in edges induced by eliminating
vertex 6: when we eliminate vertex 4, the fill-in
{2, 3} is added and the graph is now triangu-
lated.

1. For each graph in the dataset, add all
the missing edges in isolation. The set of
cliques is updated after an edge is added.
Then the edge is removed, and the next
edge is added etc.

2. For each graph in the dataset, triangulate
the graph by making all vertices simplicial
in some random order. The set of cliques
is updated after each vertex is made sim-
plicial. Already simplicial vertices are re-
moved before an update. (Note that we did
not moralize the initial directed network
even though this might lead to a slightly
more accurate test.)

These two test scenarios were chosen because
we believe that they show the worst-case perfor-
mance (scenario 1), and the expected speedup
for our triangulation problem (scenario 2). For
each graph we then ran the tests 1000 times
(with different random order each time for Test
2) and saved the mean time. We have then plot-
ted the mean time of Stix’ approach divided by
the mean time of the new approach (we call this
the ”saving ratio”).

In Figure 4 and 5 we have collected the results
of the two tests. The total time saving ratio for
various graph densities are summarized in Ta-
ble 1. We can see that even for Test 1, the new

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 25 30 35 40 45 50 55 60 65

sa
vi

ng
 r

at
io

vertices

Edge Test

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.1 0.2 0.3 0.4 0.5 0.6

sa
vi

ng
 r

at
io

density

Edge Test

Figure 4: Results for Test 1: updating the set of
cliques after adding a single edge. Points above
y = 1 indicate that the new approach is faster.

method often performs better. However, over-
all Stix’ method works better for more dense
graphs. There seems to be no clear connection
between the size of the graph and saving ratio.

For Test 2 the new method is significantly
better, especially for more dense graphs. There
also seems to be a connection between the size
of the graph and performance, with the saving
ratio increasing as the size increases. This might
be because larger graphs allow for more cliques
and larger neighbour sets.

6 Conclusion

We have described a new method for main-
taining the cliques of a dynamic graph. The
new method works by employing a local search
for cliques—the local search can in principle

 0

 50

 100

 150

 200

 250

 20 25 30 35 40 45 50 55 60 65

sa
vi

ng
 r

at
io

vertices

Triangulation Test

 0

 50

 100

 150

 200

 250

 0 0.1 0.2 0.3 0.4 0.5 0.6

sa
vi

ng
 r

at
io

density

Triangulation Test

Figure 5: Results for Test 2: updating the set of
cliques after adding fill-in edges. Points above
y = 1 indicate that the new approach is faster.

be done by any existing clique search algo-
rithm. The new method is both simpler and
more generic than previous methods, and ex-
periments show that the new method performs
significantly faster when adding a set of fill-in
edges.

We also described how dynamic clique main-
tenance algorithms may found the basis for new
total table size triangulations methods. These
methods may be optimal off-line triangulations,
or they may be any-time triangulation heuris-
tics. Since the off-line triangulations methods
can explore the whole space of possible triangu-
lations, they can also be used to give a precise
evaluation of the quality of the triangulations
returned by heuristics.

Table 1: Total time saving ratio for different
graph densities. A value above 1 indicates that
the new method was faster in terms of total run-
ning time for all graphs of the specified density.

Density δ Test 1 Test 2

δ ∈ [0, 0.1) 1.74 4.77
δ ∈ [0.1, 0.2) 1.32 9.09
δ ∈ [0.2, 0.3) 1.12 19.35
δ ∈ [0.3, 0.4) 0.88 40.95
δ ∈ [0.4, 0.5) 0.76 86.68
δ ∈ [0.5, 0.6) 0.80 153.04

Acknowledgements

We would like to thank the three anonymous
reviewers for their constructive comments.

J. Vomlel was supported by the Ministry of
Education of the Czech Republic through grants
1M0572 and 2C06019 and by the Czech Science
Foundation through grants ICC/08/E010 and
201/09/1891.

References

F. Cazals and C. Karande. 2008. A note on the
problem of reporting maximal cliques. Theoretical
Computer Science, 407(1-3):564–568, November.

R. M. Karp. 1972. Reducibility among combinato-
rial problems. In R. E. Miller and J. W. Thatcher,
editors, Complexity of Computer Computations,
pages 85–103. Plenum Press.

Ina Koch. 2001. Enumerating all connected max-
imal common subgraphs in two graphs. Theor.
Comput. Sci., 250(1-2):1–30.

J. W. Moon and L. Moser. 1965. On cliques in
graphs. Israel Journal of Mathematics, 3:23–28.

Thorsten J. Ottosen and Jǐŕı Vomlel. 2010. All
roads lead to Rome—new search methods for op-
timal triangulations. In Proceedings of the Fifth
European Workshop on Probabilistic Graphical
Models.

Volker Stix. 2004. Finding all maximal cliques in dy-
namic graphs. Comput. Optim. Appl., 27(2):173–
186.

Wilson Wen. 1990. Optimal decomposition of be-
lief networks. In Proceedings of the Sixth Con-
ference on Uncertainty in Artificial Intelligence
(UAI-90), pages 209–224, New York, NY. Else-
vier Science.

