
Scaling Up MAP Search in Bayesian Networks
Using External Memory

Heejin Lim, Changhe Yuan, and Eric A. Hansen
Department of Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

Abstract
State-of-the-art exact algorithms for solving the MAP problem in Bayesian networks use depth-
first branch-and-bound search with bounds computed by evaluating a join tree. Although this
approach is effective, it can fail if the join tree is too large to fit in RAM. We describe an external-
memory MAP search algorithm that stores much of the join tree on disk, keeping the parts of
the join tree in RAM that are needed to compute bounds for the current search nodes, and using
heuristics to decide which parts of the join tree to write to disk when RAM is full. Preliminary
results show that this approach improves the scalability of exact MAP search algorithms.

1 Introduction

State-of-the-art exact MAP algorithms for Bayesian
networks use depth-first branch and bound (DF-
BnB) search, and prune the search tree using bounds
that are computed by evaluating a join tree (Park
and Darwiche, 2003; Yuan and Hansen, 2009) or an
arithmetic circuit (Huang et al., 2006). For large and
complex Bayesian networks, however, the join tree
or arithmetic circuit can be too large to fit in RAM,
limiting scalability. In this paper, we focus on the
approach that uses a join tree to compute bounds.
The memory required to store the join tree is expo-
nential in the treewidth of the Bayesian network.

We describe how to improve the scalability of a
MAP search algorithm that evaluates a join tree to
compute bounds by using external memory to store
the join tree when it is too large to fit in RAM. The
efficiency of this approach depends on the heuris-
tics used to decide which parts of the join tree to
write to disk when RAM is full. Our study shows
that commonly used heuristics for external-memory
algorithms, such as least recently used (LRU) and
least frequently used (LFU), do not always perform
well in MAP search. We introduce new heuristics
that take into account the unique characteristics of
the search algorithm. Preliminary results show that
the approach can solve MAP problems that could
not previously be solved due to memory limitations.

2 Background

We begin with a brief review of the MAP problem
and algorithms for solving the MAP problem using
branch-and-bound search.

2.1 The MAP problem
The Maximum a Posteriori assignment problem
(MAP) is defined as follows. Let M be a set of
explanatory variables in a Bayesian network; from
now on, we call these the MAP variables. Let E be
a set of evidence variables whose states have been
observed. The remaining variables, denoted S, are
variables for which the states are unknown and not
of interest. Given an assignment e for the variables
E, the MAP problem is to find an assignment m for
the variables M that maximizes the joint probability
P (m, e) (or, equivalently, the conditional probabil-
ity P (m|e)). Formally,

m̂MAP = argmax
M

∑
S

P (M,S,E = e) , (1)

where P (M,S,E = e) is the joint probability dis-
tribution of the network given the assignment e.

2.2 Join tree upper bound
In Equation (1), the maximization and summation
operators are applied to different sets of variables.
The MAP variables in M can be maximized in dif-
ferent orders, and the variables in S can be summed



out in different orders, without affecting the re-
sult. But the summations and maximizations are
not commutable. As a result, variable elimination-
based methods for solving MAP have a complexity
that depends on the constrained treewidth of the net-
work, and they are typically infeasible because they
require too much memory.

If the ordering among the summations and maxi-
mizations is relaxed, however, an upper bound on
the probability of a MAP solution is computed.
The following theorem is due to Park and Dar-
wiche (2003).

Theorem 1. Let ϕ(M,S,Z) be a potential over the
disjoint variable sets M, S, and Z. For any instan-
tiation z of Z, the following inequality holds:∑
S

max
M

ϕ(M,S,Z = z) ≥ max
M

∑
S

ϕ(M,S,Z = z) .

Based on this result, Park and Darwiche (2003)
compute upper bounds for the MAP problem using
the join tree algorithm, but with redefined messages.
Each message is computed such that variables in S
are summed over before MAP variables are maxi-
mized.

2.3 Solving MAP using DFBnB
Park and Darwiche (2003) use the join tree upper
bound in a depth-first branch-and-bound (DFBnB)
search algorithm to solve the MAP problem. Since
a full evaluation of the join tree computes simulta-
neous upper bounds for all MAP variables, Park and
Darwiche use dynamic variable ordering to speed
up their search algorithm. Yuan and Hansen (2009)
observe that, when a static variable ordering is used,
it is only necessary to compute bounds for the next
MAP variable to be instantiated at each step, and
this only requires evaluating a small part of the join
tree. They use a static ordering of MAP variables
that is created from a post-order traversal of the
MAP variables in the join tree. With this static or-
dering, the upper bounds needed for the next instan-
tiating variable(s) in MAP search can be computed
incrementally by message passing along a limited
and fixed path in the join tree. During forward
traversal of a branch of a search tree, it is only nec-
essary to perform message passing once along this
path in the join tree, broken up into separate steps

, ,

, ,

,

, ,

, ,

, ,

, ,

, ,

, ,

,,

3,4,7,9

3,7,8

1,2,3

3,4,13

4,12

3,9,15

0,5,6,7

0,4,7

0,4,14

7,9,10

9,10,11

3,7
3,4

4

3,9
4,7

7,9

9,100,40,7
3

Figure 1: Example of a join tree for upper bound
computation. The shaded nodes are nodes of the
join tree that contain MAP variables.

for each instantiating variable. To allow efficient
backtracking, the clique and separator potentials of
the join tree that are changed during bounds compu-
tation are cached in the order that they are changed.
During backtracking, the cached potentials can be
used to efficiently restore the join tree to its previ-
ous state before one or more MAP variables were
instantiated. The readers are referred to (Yuan and
Hansen, 2009) for more details of the algorithm.

We illustrate the idea with an example. Figure 1
shows the join tree of a Bayesian network based on
the Hugin architecture (Jensen et al., 1990). The
numbers are the indices of distinct variables in the
network, and the numbers in bold-face italics rep-
resent the MAP variables, which are 0, 1, 2, 5, and
6. Let the static search ordering of the MAP vari-
ables be: 1,2,0,5,6. After MAP variables 1 and 2
are instantiated, their values are entered as evidence
to clique {1, 2, 3}. Messages can then be sent to the
other parts of the join tree to get upper bounds for
the remaining MAP variables. However, since the
next variable in the static ordering is 0, it is only
necessary to send messages along the shaded path
from clique {1, 2, 3} to clique {0, 4, 7}. None of
the other parts of the join tree need to be involved
in the propagation. The path has a new set of clique
and separator potentials as a result of the message
propagation. The old potentials are cached before
they are overwritten with the new potentials. If all
the search nodes after instantiating variable 0 can
be pruned using upper bounds, the search algorithm
backtracks to the parent search node and retracts the
join tree to the previous state. This can be achieved
by simply restoring the cached potentials in reverse
order and rolling back the changes.



3 External-memory MAP Search

The MAP search algorithms of Park and Dar-
wiche (2003) and Yuan and Hansen (2009) use
join tree evaluation to compute bounds for a depth-
first branch-and-bound search. We use the Yuan
and Hansen algorithm as the basis for our external-
memory algorithm, in part because it has been
shown to be more efficient than the Park and Dar-
wiche algorithm when their internal-memory ver-
sions are compared, and in part because its incre-
mental approach is easier to convert to an efficient
external-memory algorithm. Each time the Park and
Darwiche algorithm computes bounds for a node of
the search tree, it must perform a full join tree evalu-
ation; this could require copying the entire join tree
into RAM for each search node, incurring a large
amount of disk I/O. By contrast, each time the Yuan
and Hansen algorithm computes bounds for a node
of the search tree, it only needs to keep a small part
of the join tree in RAM. As we will see, the locality
that it exploits for incremental message propagation
is also exploited by an external-memory version of
the algorithm to minimize disk I/O.

3.1 Memory architecture

Figure 2 illustrates how our algorithm uses RAM
and disk. We call the jointree without potentials the
skeleton. The skeleton is typically small and always
resides in RAM, as shown in Figure 2. Each clique
of the skeleton has one main pointer that points to
the clique’s potential, which we call the main poten-
tial. The clique may also have one or more cache
pointers that point to cached copies of the poten-
tial. The basic idea of the algorithm is to store some
of the potentials in RAM and some on disk. When a
potential is stored on disk, it is stored in a file named
by a unique tag assigned to the potential. In Fig-
ure 2, arc 1 shows an example of a main pointer,
and arc 2 shows an example of a cache pointer.

All computation on the jointree is based on the
main potentials. The other potentials are only for
caching purposes. A potential needed for compu-
tation should reside in RAM. When necessary, we
can write a potential in RAM to a disk file named
after the potential’s tag, in order to free up space in
RAM; we can also use a tag to find the appropriate
disk file to read the potential back into RAM.

Disk

Memory 

RAM 

Tag
2

1

3,4,7,9 

3,7,8

1,2,3

3,4,13

4,12

3,9,15

0,5,6,7

0,4,7

0,4,14

7,9,10

9,10,11

3,7
3,4

4

3,9
4,7

7,9

9,100,40,7
3

Figure 2: Memory architecture of the algorithm.

3.2 Initialize an upper-bound join tree

In (Yuan and Hansen, 2009), we initialize an upper-
bound jointree for a Bayesian network completely
in RAM. We first create its skeleton. We then ini-
tialize all the clique potentials with appropriate con-
ditional probability tables of the Bayesian network.
After entering evidence to the jointree, a full join
tree propagation is performed to finish initializing
the upper-bound join tree. A full join tree propaga-
tion involves two phases: collect and distribute. In
the collect phase, all cliques send messages to their
parents by combining messages sent from children
cliques. After the root receives all messages from
its children, the distribute phase starts, in which all
cliques send messages to their children by combin-
ing messages from parents.

Several preprocessing methods can be used to re-
duce the size of an upper-bound jointree in order to
delay the use of external memory. First, we use rel-
evance reasoning (Lin and Druzdzel, 1997) to pre-
process a Bayesian network based on the evidence
and target variables of a MAP problem. This step
reduces the size of the network by removing irrel-
evant variables such as barren variables. Second,
we create an upper-bound join tree that is as small
as possible without considering the quality of the
bounds. Third, we can release clique potentials that
are only needed during join tree initialization, and
not during MAP search. By releasing, we mean that
the potentials are deleted and their pointers are set
to NULL. With incremental join tree bounds, only
part of the join tree is involved in message propa-
gation during MAP search. In Figure 1, the sec-



ond left-most branch has no MAP variables. Once a
clique on this branch has sent a message to its par-
ent, the clique can be released from memory. In fact,
all non-shaded parts of the join tree in Figure 1 can
be released before MAP search. Doing so not only
postpones the use of external memory, it improves
the efficiency of the algorithm, because there is no
need to send messages to these parts of the join tree
during the distribute phase.

Nevertheless, the final upper-bound join tree may
still be too large to fit in RAM. In that case, we must
construct the join tree incrementally and store parts
of it on disk. We do so as follows. After construct-
ing the skeleton, we initialize the jointree by inter-
leaving potential initialization and message propa-
gation via a left-to-right, leaf-to-root traversal of the
jointree. For Figure 1, we would start by initializ-
ing the potential of clique {1, 2, 3} in the left-most
branch. We then initialize the potential for separa-
tor {3} by calculating the message to be sent from
{1, 2, 3} to {3, 7, 8}. After that, we initialize the po-
tential of clique {3, 7, 8} and combine the message
stored in separator {3}. To avoid exhausting RAM,
we estimate the amount of additional RAM needed
for each step of the algorithm and check if the in-
crease is larger than the amount of available RAM.
If there is not sufficient RAM available, we have to
write to disk some cliques or separators that are al-
ready constructed and reside in RAM. In a later sec-
tion of the paper, we introduce several heuristics for
selecting which cliques and separators to write to
disk. For now, it suffices to say that enough RAM
will be freed so that the current step can be exe-
cuted. We can use the above incremental scheme to
complete the collect phase.

The collect phase traverses a join tree from left
to right. After the collection phase finishes, the
cliques stored on disk most likely come from the
leftmost branches. Since the distribute phase may
need to restore some clique potentials from disk
to RAM, the distribute phase uses a right-to-left,
root-to-leaf traversal of the join tree so as to use
clique potentials that currently reside in RAM first.
The leftmost branches are not read from disk until
they are needed. After the distribute phase finishes,
cliques from the rightmost branches are swapped
out to disk. This improves the performance of MAP
search because the search starts from the leftmost

branches as well.
We may still be able to release part of the join tree

during the distribute phase. When all of the MAP
variables are in one branch of the join tree, we can
release the root and its immediate successor cliques
if they do not contain MAP variables.

Finally, calculating a message requires the poten-
tials of at least one clique and one separator to be in
RAM at the same time. For example, we need both
clique {1, 2, 3} and separator {3} to be able to com-
pute the message to be sent to {3, 7, 8}. Therefore,
our method has a minimal memory requirement that
is equal to the largest total size of any neighboring
pair of clique and separator.

3.3 MAP search using external memory
Once the upper-bound join tree is initialized, we
start the MAP search. At each search step, we
need to use the join tree to compute the search
bounds, which requires message propagation on the
jointree. For each message propagation step, we
check whether or not the potentials we need reside
in RAM. If not, we check whether there is enough
RAM available for reading them back in RAM from
disk. If necessary, we use the heuristics described in
Section 3.4 to select potentials to write from RAM
to disk in order to free up enough RAM to continue.
The strategy of using external memory is similar to
the strategy used in the join tree initialization phase.
There are, however, some important differences that
warrant discussion.

For efficient backtracking, the Yuan and Hansen
algorithm caches and restores potentials during the
MAP search. The need for caching makes using
external memory slightly more complicated. New
strategies are needed, both during forward search
and backtracking.

During forward search, we need to cache a po-
tential before we set the state of a newly instantiated
MAP variable as evidence to a clique potential, and
before we update a clique or separator potential us-
ing incoming messages. There are two possibilities.
One is that the potential to be cached is in RAM.
If enough additional RAM is available, we make a
copy in RAM immediately. If not, we free up space
by writing some cliques from RAM to disk before
making the copy in RAM. The second possibility is
that the potential is on disk. Since we need the po-



tential in the next operation, we read a copy of the
potential from disk to RAM and swap the main and
cache pointers so that the main pointer points to the
copy in RAM.

When backtracking, we need to restore the join
tree to a previous state by restoring some cached
potentials. A potential and its cached copy can be
in RAM and/or disk. No matter where they are, we
simply delete the current main potential and redirect
the main pointer to point to the cached copy. There-
fore, no disk I/O is needed during backtracking. We
only read potentials from disk to RAM when they
are needed during forward search.

The strategies described above allow a potential
that is once written to disk to remain on disk and to
be repeatedly used until it is not needed anymore.
This helps to limit the number of times the same
potential is written to disk or read from disk.

3.4 Heuristics

It is critical for our MAP algorithm to have a good
heuristic for selecting which cliques and separators
to write to disk when RAM is full, in order to keep
the amount of disk I/O as low as possible.

Commonly-used heuristics include storing the
least recently used (LRU) or the least frequently
used (LFU) data in external memory. We imple-
mented both and found that the LRU heuristic out-
performs the LFU heuristic because message prop-
agation follows a fixed post-traversal order of the
join tree. We also tested two other heuristics. One
heuristic that we call largest first (LF) selects the
largest cliques to store in external memory. The
other heuristic that we call largest but least fre-
quently used (LLF) integrates the LF and LFU
heuristics. LLF selects the largest cliques, but de-
creases the priority of a clique if it is selected too
often. More formally, we use the following formula
to order the candidate cliques,

priority =
size

#I/O
, (2)

where size is the size of a clique and #I/O is the
number of times the clique is written to disk or read
from disk. The clique that has the largest priority
value is selected as the next clique to write to disk.

4 Empirical evaluation

We tested our external-memory algorithm
(DFBnB+EM) by comparing it to the original
internal-memory MAP algorithm (DFBnB) devel-
oped by Yuan and Hansen (2009). Experiments
were performed on a 2.1GHz processor with 4GB
of RAM running a 32-bit version of Windows
Vista. The user is only allowed to use 2GB of
the memory address in a 32-bit environment. The
magnetic disk used for external memory operates
at 5400RPM and its interface is SATA2 (Serial
Advanced Technology Attachment).

4.1 Benchmarks and experimental design

Algorithm performance was tested on a set of
benchmark Bayesian networks. Two of the net-
works, BN-43 and BN-44, are from the UAI-06 in-
ference competition. For these two networks, the
MAP problem cannot be solved without using disk.
This shows that the new algorithm increases the
range of problems for which the MAP problem can
be solved exactly.

The other networks have been previously used to
test the internal-memory version of the MAP search
algorithm. They allow us to compare the perfor-
mance of the internal-memory MAP-search algo-
rithm to the external-memory algorithm under ar-
tificial memory limits. For each Bayesian network,
we set the low memory limit based on the minimal
memory requirement for the join tree of the net-
work. We set the high memory limit by averaging
the low memory limit and the total memory used
by the internal-memory MAP search algorithm. For
the BN-43 and BN-44 networks, we set the low
memory limit in the same way but set the high mem-
ory limit to be all available RAM.

Since the artificial memory limits are set based
on the join tree size, they do not consider other
memory requirements of the MAP algorithm, such
as memory incurred during search. Even when the
initial join tree fits in physical memory, caching
potentials during MAP search can significantly in-
crease the amount of memory needed. Yuan and
Hansen (2009) found that the increase ranges from
slightly larger to several times larger. Therefore,
MAP search may still fail if external memory is not
used. Finally, the Windows OS typically allocates



Network DFBnB
#Nodes #Backtracks Build(ms) Search(ms) Largest clique Jointree Avg memory Max memory

Hailfinder 9,902 61,721 15 457 26K 98K 231K 231K
Water 5 14 1,683 372 41M 70M 126M 140M
Munin4 195 104 57,332 567 8M 155M 180M 408M
Barley 282 2,524 8,949 62,858 100M 230M 345M 475M
Mildew 1,135 6,102 5,490 13,684 43M 104M 166M 167M
Andes 124,971 975,861 743 80,522 2M 5M 14M 14M
Pigs 75,627 660,986 2,313 150,206 4M 11M 32M 33M
Diabetes 11,783 161,262 7,629 204,837 2M 89M 144M 150M
BN-43 5,520 54,700 - - 512M 1,008M - -
BN-44 1,292 16,276 - - 258M 890M - -

Table 1: Results for the DFBnB algorithm of Yuan and Hansen (2009). ‘#Nodes’ is the number of search
nodes. ‘#Backtracks’ is the number of backtracking steps. ‘Largest clique’ is the largest clique size, and
‘Jointree’ is the jointree size. ‘Avg memory’ is the average total memory of the test cases, while ‘Max
memory’ is the maximum total memory. ‘K’ means kilobytes, and ‘M’ megabytes. Since the internal-
memory algorithm could not solve the MAP problem for networks BN-43 and BN-44, the partial results in
the table are from the external-memory algorithm.

a significant portion of memory to service applica-
tions. Therefore, not all RAM is available for use
by the MAP algorithm.

For each of the benchmark Bayesian networks,
we generated 10 random test cases with as many
root nodes as MAP variables and with all leaf
nodes as evidence variables so that they are solv-
able within reasonable time. Tables 1 and 2 report
the average results for these test cases.

4.2 Analysis of results

Table 1 shows the results for the DFBnB algorithm
and Table 2 shows the results for the DFBnB+EM
algorithm. However, note that the numbers of
search nodes (#Nodes) and backtracks (#Back-
tracks) shown in Table 1, as well as the size of the
largest clique and the size of the join tree, are the
same for both algorithms.

Unsurprisingly, there is more disk I/O (both reads
and writes) when there is more backtracking. But
interestingly, the amount of data read from disk to
RAM is often larger than the amount of data writ-
ten from RAM to disk. During backtracking, we
need to restore some cached potentials. If they are
in external memory, we do not need to immediately
read them from disk to RAM; we just pass their tags
to the potential pointers. When forward search re-
sumes, copies are then read from disk to RAM for
message propagation, and main and cache point-
ers are swapped so that the cache pointer points to

4

6

8

10

12

14

16

18

20

N
u

m
b

e
r 

o
f 

I/
O

s
 

1
0

0
0

LF

LLF

LRU

0

2

4

6

8

10

12

14

16

18

20

0.14 0.18 0.18 0.36 0.62 1.44 2.08 11.88

N
u

m
b

e
r 

o
f 

I/
O

s
 

1
0

0
0

Clique Size (KB)

LF

LLF

LRU

Figure 3: Number of times chosen for I/O (in thou-
sands) versus clique size for different heuristics on
the Hailfinder network.

the external-memory copy. No write is necessary
during this process, unless memory is running low.
This is desirable because, for the same amount of
data, writing to disk takes more time than reading
from disk. This can be explained as follows. When
there is not much backtracking, however, as for the
Munin network, it is possible for more data to be
written to disk than read from disk.

Table 2 compares the performance of the three
heuristics described in Section 3.4: LRU, LF, and
LLF. The results indicate that LRU typically incurs
the least amount of I/O. A join tree typically has
smaller leaf cliques and larger inner cliques, and in-
ner cliques are accessed more often during back-



Network
DFBnB+EM

Memory limit Heuristics Jointree building MAP search
Time Write Read Time Write Read

Hailfinder

40K
LF 836 303K 227K 147,730 58M 97M
LLF 881 303K 227K 91,539 33M 73M
LRU 1,218 302K 209K 156,263 9M 62M

135K
LF 16 0K 0K 900 507K 8M
LLF 19 0K 0K 1,915 298K 20M
LRU 19 0K 0K 3,293 267K 27M

Water

55M
LF 2,951 180M 164M 1,767 223M 234M
LLF 2,972 180M 164M 2,199 223M 234M
LRU 3,187 186M 168M 2,034 237M 240M

90M
LF 1,758 0M 0M 957 93M 93M
LLF 1,766 0M 0M 1,108 62M 132M
LRU 1,778 0M 0M 1,296 91M 151M

Munin4

10M
LF 67,879 697M 534M 2,940 334M 333M
LLF 69,180 697M 534M 8,311 333M 332M
LRU 81,317 570M 410M 20,562 239M 234M

95M
LF 59,037 186M 123M 2,305 102M 93M
LLF 59,870 248M 180M 2,138 114M 98M
LRU 74,017 281M 206M 10,581 84M 66M

Barley

150M
LF 11,906 363M 293M 266,415 24G 30G
LLF 11,605 363M 293M 259,678 22G 30G
LRU 11,522 313M 275M 291,873 24G 31G

250M
LF 8,859 0M 0M 229,783 21G 27G
LLF 8,923 0M 0M 113,009 6G 17G
LRU 8,869 0M 0M 88,168 249M 15G

Mildew

50M
LF 8,065 335M 272M 46,589 5G 7G
LLF 7,859 335M 272M 47,537 5G 7G
LRU 8,331 344M 280M 40,764 2G 4G

110M
LF 5,643 0M 0M 16,395 55M 2G
LLF 5,588 0M 0M 16,373 55M 2G
LRU 5,680 0M 0M 18,595 66M 606M

Andes

5M
LF 782 2M 1M 139,772 3G 12G
LLF 775 1M 1M 120,408 977M 9G
LRU 818 0M 0M 362,868 1G 8G

10M
LF 772 0M 0M 84,679 319M 1G
LLF 757 0M 0M 87,456 13M 5G
LRU 765 0M 0M 175,501 51M 7G

Pigs

10M
LF 2,528 10M 8M 877,444 77G 86G
LLF 2,558 15M 12M 399,216 23G 47G
LRU 6,251 9M 6M 1,866,499 8G 42G

20M
LF 2,384 0M 0M 184,497 523M 29G
LLF 2,363 0M 0M 197,263 368M 27G
LRU 2,443 0M 0M 1,163,290 3G 23G

Diabetes

5M
LF 10,821 155M 115M 3,445,326 115G 124G
LLF 11,213 159M 119M 2,275,228 62G 77G
LRU 11,475 146M 106M 2,661,619 44G 62G

75M
LF 7,694 0M 0M 238,486 147M 26G
LLF 7,680 0M 0M 238,031 51M 30G
LRU 7,682 0M 0M 227,471 34M 20G

BN-43

600M
LF 81,276 4G 4G 1,760,086 41G 46G
LLF 82,602 4G 4G 1,804,655 41G 46G
LRU 71,151 3G 3G 1,114,261 24G 29G

Available
LF 13,962 0M 0M 514,972 10G 20G
LLF 13,775 0M 0M 481,041 5G 16G
LRU 13,962 0M 0M 451,230 5G 15G

BN-44

350M
LF 70,731 4G 3G 3,513,469 251G 254G
LLF 69,006 4G 3G 3,472,347 239G 245G
LRU 77,144 3G 3G 3,219,000 208G 214G

Available
LF 18,426 0M 0M 537,318 16G 64G
LLF 17,984 0M 0M 407,260 1G 50G
LRU 18,225 0M 0M 510,685 12G 56G

Table 2: Results of external-memory MAP search. Running time is measured in milliseconds. ‘K’ means
kilobytes, ‘M’ means megabytes, and ‘G’ means gigabytes.



tracking search. Therefore, LRU tends to select
smaller cliques to write to disk. By contrast, LF and
LLF select larger cliques to write to disk. This re-
sult is clearer in Figure 3, which plots the number of
disk I/O operations versus clique size in solving the
MAP problem for the Hailfinder network. The two
largest cliques are not selected often by LF and LLF
because they are stored in external memory early in
the search, and they remain there most of the time.
They are only occasionally copied from disk back
to RAM during backtracking.

However, the amount of disk I/O is not directly
proportional to running time. Although LRU has
the least amount of I/O and is faster than LF and
LLF on some networks, it can be much slower on
some other networks, such as Munin4 and Pigs. One
reason for this is the small cliques chosen by LRU
may not completely fill the I/O buffers, leading to
more I/O operations. If all cliques are large, as they
are for BN-43 and BN-44, LRU may perform better.

The LF heuristic may repeatedly select the same
large cliques to write to disk because it only con-
siders clique size. The LLF heuristic decreases the
frequency with which the same large cliques are
selected by prioritizing cliques based on dividing
clique size by the number of times the clique has
been written to or read from disk. Results show that
when there is a lot of backtracking and not much
RAM available, LLF can be significantly faster than
LF. This is illustrated by the results for Hailfinder
and Barley. Otherwise, LF and LLF demonstrate
similar behavior in most cases.

We can use the ratio of the size of the join tree
to the size of the largest clique to estimate the im-
provement in scalability from using our external-
memory algorithm. For the benchmark networks,
the ratio ranges from several times to around 45
times. The ratio is even higher if we take into ac-
count all memory used by the original MAP algo-
rithm, since caching potentials can increase the size
of a join tree.

5 Conclusion

We have introduced an external-memory approach
to scaling up a depth-first branch-and-bound algo-
rithm for solving the MAP problem that uses incre-
mental join tree bounds (Yuan and Hansen, 2009).

Our results show that the external-memory ap-
proach improves scalability and allows MAP prob-
lems to be solved exactly that could not be solved
before due to memory limitations.

The minimum memory requirement of our algo-
rithm is the amount of memory needed to store any
neighboring pair of clique and separator. We plan
to address this limitation by allowing just part of a
clique to be stored in RAM while the rest is stored
on disk (Kask et al., 2010). We will try to develop
better heuristics for selecting potentials to write to
external memory. Although we already use rele-
vance reasoning to exploit evidence-based indepen-
dence, we will consider whether the lazy propaga-
tion architecture proposed in (Madsen and Jensen,
1999) can improve the efficiency of our algorithm.

Acknowledgments This research was supported
by NSF grants IIS-0953723, EPS-0903787, and IIS-
0812558.

References
Jinbo Huang, Mark Chavira, and Adnan Darwiche. 2006.

Solving map exactly by searching on compiled arithmetic
circuits. In Proceedings of the 21st National Conference on
Artificial Intelligence (AAAI-06), page 143148.

Finn V. Jensen, Steffen L. Lauritzen, and Kristian G. Ole-
sen. 1990. Bayesian updating in recursive graphical models
by local computation. Computational Statistics Quarterly,
4:269–282.

Kalev Kask, Rina Dechter, and Andrew Gelfand. 2010.
BEEM: Bucket elimination with external memory. In Pro-
ceedings of The 26th Conference on Uncertainty in Artificial
Intelligence (UAI-10), AUAI Press Corvallis, Oregon.

Yan Lin and Marek J. Druzdzel. 1997. Computational advan-
tages of relevance reasoning in Bayesian belief networks.
In Proceedings of the Thirteenth Annual Conference on Un-
certainty in Artificial Intelligence (UAI-97), pages 342–350,
San Francisco, CA. Morgan Kaufmann Publishers, Inc.

Anders L. Madsen and Finn V. Jensen. 1999. Lazy propa-
gation: A junction tree inference algorithm based on lazy
evaluation. Artificial Intelligence, 113(1-2):203–245.

James D. Park and Adnan Darwiche. 2003. Solving MAP
exactly using systematic search. In Proceedings of the
19th Conference on Uncertainty in Artificial Intelligence
(UAI–03), pages 459–468, Morgan Kaufmann Publishers
San Francisco, California.

Changhe Yuan and Eric A. Hansen. 2009. Efficient computa-
tion of jointree bounds for systematic MAP search. In Pro-
ceedings of 21st International Joint Conference on Artificial
Intelligence (IJCAI-09), pages 1982–1989, Pasadena, CA.


