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Abstract
This paper presents an extension to the Conservative PC algorithm which is able to detect violations of

adjacency faithfulness under causal sufficiency and triangle faithfulness. Violations can be characterized by
pseudo-independent relations and equivalent edges, both generating a pattern of conditional independencies
that cannot be modeled faithfully. Both cases lead to uncertainty about specific parts of the skeleton of the
causal graph. This is modeled by an f-pattern. We proved that our Very Conservative PC algorithm is able
to correctly learn the f-pattern. We argue that the solution also applies for the finite sample case if we accept
that only strong edges can be identified. Experiments based on simulations show that the rate of false edge
removals is significantly reduced, at the expense of uncertainty on the skeleton and a higher sensitivity for
accidental correlations.

1 Introduction
Independence-based algorithms for learning the causal
structure from data rely on the Conditional Independen-
cies (CIs) entailed by the system’s causal structure. The
causal Markov condition gives the CIs that follow from a
causal structure that is represented by a Directed Acyclic
Graph (DAG): every variable is independent of its non-
effects conditional on its direct causes. All algorithms
rely on a form of faithfulness. Causal faithfulness says
that no other CIs appear in the system’s probability dis-
tribution than those entailed by the causal Markov con-
dition. Faithfulness is therefore a very convenient pro-
perty: all CIs tell us something about the causal struc-
ture. Violation of faithfulness means that there are non-
Markovian CIs.

The validity of causal faithfulness is supported by
the ‘Lebesgue measure zero argument’ (Meek, 1995b),
which says that the chance of randomly picking a pa-
rameterization of a Bayesian network resulting in non-
Markovian CIs has measure zero. But in near-to-
unfaithful situations probability distributions come in-
finitely close to unfaithful distributions, such that a test
for independence which has to rely on a finite sample
will not be able to identify the dependencies correctly.
The Lebesgue measure zero argument does not hold here,
since the ε-regions around unfaithful situations do not
have Lebesgue measure zero.

(Zhang and Spirtes, 2007) showed that only in cases of
triangle unfaithfulness violations of faithfulness are un-
detectable. This happens when the true probability dis-
tribution is not faithful to the true causal DAG, but is
nonetheless faithful to some other DAG. In those cases,

the CIs do not give enough evidence to learn the correct
DAG. This will be discussed in more detail in the next
section. We will therefore have to assume triangle faith-
fulness. Then, violations of faithfulness are detectable in
the sense the true probability distribution is not faithful
to any DAG. It means that there exist several DAGs that
each explain a subset of the CIs.

(Ramsey et al., 2006) showed that we only need ad-
jacency faithfulness and orientation faithfulness to learn
the correct equivalence class. Adjacency Faithfulness
states that any two adjacent variables do not become
independent when conditioned on some other (possible
empty) set of variables. It is necessary to recover the
correct skeleton of the true DAG. Orientation faithful-
ness (check reference for definition) is necessary for fin-
ding the correct orientations. (Ramsey et al., 2006) ex-
tended the well-known PC algorithm to detect violations
of orientation faithfulness. Violations lead to specific
ambiguous parts of the DAG, in which no decision on
the orientation can be taken. The Conservative PC al-
gorithm is given in the next section. In this paper we
apply the same idea for handling violations of adjacency
faithfulness. They can be identified, under triangle faith-
fulness, by two patterns: pseudo-independent relations
and equivalent edges. These patterns will lead to parts
of the model in which no decision can be taken on the
correct skeleton.

The following section recalls the important aspects of
independence-based causal structure learning. In section
3 we analyze violations of adjacency faithfulness. Based
on the identified CI patterns, the VCPC algorithm is pre-
sented and proven to be correct in section 4. Section 5



analyzes the finite sample case. Finally, the experimen-
tal results are presented in section 6.

2 Independence-Based Causal Inference
We recall the Conservative PC algorithm (CPC), see
Alg. 1. Adj(G,X) denotes the set of nodes adjacent
to X in graph G. Single stochastic variables are de-
noted by capital letters, sets of variables by boldface ca-
pital letters. Step 3 consists of extensions to the original
PC algorithm (Spirtes et al., 1993) in which Orientation-
Faithfulness is tested (Ramsey et al., 2006). Edges of an
unshielded triple, i.e. a triple < X,Y, Z > for which
X and Z are both adjacent to Y , but X and Z are not
adjacent, are not oriented if a failure is detected, but are
indicated as unfaithful, as shown in Fig. 1(a). An e-
pattern is a partially-oriented DAG in which some triples
are denoted as unfaithful.

Undetectable violations of faithfulness only happen by
violations of the triangle faithfulness (Zhang and Spirtes,
2007) condition. It states that given a set of variables V
whose true causal DAG is G, let X , Y , Z be any three
variables that form a triangle in G

1. If Y is a non-collider on the path < X,Y, Z >,
then X , Z are dependent conditional on any subset
of V \{X,Z} that does not include Y .

2. If Y is a collider on the path < X,Y, Z >, then
X , Z are dependent conditional on any subset of
V \{X,Z} that includes Y

To illustrate triangle unfaithfulness, consider the DAG
shown in Figure 2(b). There are 3 ways to violate triangle
faithfulness for this DAG:

(TRUFF1) X⊥⊥Y gives faithful model X → Z ← Y

(TRUFF2) Y⊥⊥Z gives faithful model Y → X ← Z

(TRUFF3) X⊥⊥Z|Y gives faithful modelX → Y → Z

Besides faithfulness, minimality (MIN) is also a basic
condition: elimination of an edge leads to a Bayesian
network which violates the Markov condition. Formally:

∀X,Y ∈ Vwhich are adjacent in Bayesian network :

X 2Y | OthPa(X−Y ) (1)

where OthPa(X−Y ) of edge X−Y is defined as
Parents(Y ) \ X if X is parent of Y , otherwise it is
Parents(X) \ Y . OthPa is short for ‘other parents’.

3 Violation of Adjacency Faithfulness
Here we analyze unfaithfulness in the case of a perfect
test for (conditional) independence. Later we will con-
sider imperfect tests due to finite sample sizes. In all

Algorithm 1 The CPC algorithm

S1 Start with the complete undirected graph U on
the set of variables V.

Part I Adjacency search.

S2 n = 0;

repeat

For each pair of variables A and B that are
adjacent in (the current) U, check through the
subsets of Adj(U,A) \ {B} and the subsets
of Adj(U,B) \ {A} that have exactly n varia-
bles. For all such subsets S check indepen-
dency A⊥⊥B | S. If independent, remove the
edge between A and B in U , and record S as
Sepset(A,B);

n = n+ 1;

until for each ordered pair of adjacent variables
A and B, ADJ(U,A) \ {B} has less than n ele-
ments.

Part II Orientation.

S3 LetG be the undirected graph resulting from step
S2. For each unshielded triple 〈A,B,C〉 in G,
check all subsets of A’s potential parents (nodes
that are adjacent to A but are not A’s children)
and of C’s potential partners:

(a) If B is NOT in any such set conditional on
which A and C are independent, orient the
triple as a collider: A→ B ← C;

(b) If B is in all such sets conditional on which
A and C are independent, leave A−B −C
as it is , i.e., a non-collider;

(c) Otherwise, mark the triple as “unfaithful” by
underlining the triple, A−B− C.

S4 Execute the orientation rules given in (Meek,
1995a), but not on unfaithful triples.

other cases than triangle unfaithfulness, there are Condi-
tional Independencies (CIs) that make violation of faith-
fulness detectable. Violations of adjacency faithfulness
can be identified by two patterns: pseudo-independent
relations and information equivalences. Consider X →
Y . There are 2 kinds of violations: one in which X and
Y are marginally independent and one in which they be-
come independent when conditioned on some Z.
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Figure 1: The three cases of uncertainty: (a) an un-
faithful triple by violation of orientation faithfulness for
unshielded triple 〈A,B,C〉, (b) PPIRs when X⊥⊥Y in
model X → Y ← Z and (c) equivalent edges when
X⊥⊥Y |Z in model X → Y → Z.
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Figure 2: Marginal independency X⊥⊥Y leads to viola-
tion of triangle faithfulness for (b) and (c). For (a) this
gives a PIR, denoted in (d). This model is equivalent to
(e). Both equivalent structures are denoted by PPIRs in
(f).

3.1 Violation by Marginal Independence

Whenever X⊥⊥Y for some adjacent variables X and Y ,
we call X − Y a Pseudo-Independent Relation (PIR).
Then, by Eq. 1, there exists at least one subset of V,
namely OthPa(X − Y ), which turns the independency
into a dependency after conditioning. We call any such
subset a dependency set, or depset for short, of X and
Y , written as depsetXY . A special case in which PIRs
occur is identified as pseudo-independent models (Xiang
et al., 1996), in which three variables are pairwise inde-
pendent but become dependent when conditioned on the
third variable.

For not overloading the rest of the discussion we as-
sume that for each PIR there exists a depset with one
element. PIRs with larger depsets can be identified simi-
larly, but such cases are very rare.

Assumption 1 If X and Y are adjacent, and X⊥⊥Y ,
there exists a Z ∈ OthPa(X−Y ) such that X 2Y |Z.

Take Z ∈ OthPa(X − Y ) which forms a depset of
X−Y . Z is adjacent to Y . IfZ would also be adjacent to
X , X⊥⊥Y is a result of triangle unfaithfulness (TRUFF1
or TRUFF2), as shown in Fig. 2 by (b) and (c). By ex-
cluding the triangle case, X → Y ← Z is an unshielded
collider for which there is a U such that X⊥⊥Z|U and
in general X 2Z|Y,U. Fig. 2(a) shows such a model for

which U is empty. To denote a PIR, we annotate the edge
with the depset, as shown in Fig. 2(d).

A PIR implies a marginal independence and a condi-
tional dependence. This pattern is the same as that of a
v-structure. Hence, a PIR leads to two equivalent struc-
tures that can explain all CIs. Fig. 2(e) gives the same CIs
as (d). We describe this pattern by connecting variables
which are marginally independent but have a depset by a
special edge: a Potential PIR (PPIR). A PPIR is written
as X−(Z)−Y and graphically denoted by a dashed edge
annotated with the depset, as shown in Fig. 2(f). A PPIR
can thus be a PIR or be part of a v-structure. In Sec. 4
we will see that in certain cases, a PIR can be identified
from a structure with 2 PPIRs.

3.2 Violation by a non-Markovian Conditional
Independence

A second violation of adjacency faithfulness happens
when for adjacent variables X and Y : X 2Y |depsetXY

and there is a set Z for which [X⊥⊥Y | Z ∪ depsetXY ].
The latter denotes a strict CI: a CI that turns into a condi-
tional dependency for each proper subset of the conditio-
ning set. Based on this independence, the PC algorithm
would wrongly remove the edge between X and Y . We
will prove that under triangle faithfulness (1) there are
CIs that let us detect such false separations, and (2) the
ambiguities can be represented by equivalent edges. We
first define equivalent edges and present an example. For
clarity, we omit the depset depsetXY in the discussion.

3.2.1 Equivalent edges
The result of a false separation given by the above

strict CI are 2 or more equivalent structures in which one
edge can be replaced by another. We call them equiva-
lent edges. Equivalent edges are linked with an arc with
a bullet at each end, as shown in Fig. 1(c).

Definition 2 Take distribution P and G a DAG not con-
taining directed edges X−Y and Z−Y . Two edges X−Y
and Z−Y are called equivalent edges if and only if G is
not Markovian for P and

G ∪X−Y is Markovian for P

⇔ G ∪ Z−Y is Markovian for P (2)

Note that with X−Y we denote that the edge can have
both orientations. A DAG is called Markovian for a dis-
tribution if all CIs of the DAG given by the Markov con-
dition are present in the distribution.

3.2.2 Example of Information Equivalence.
Consider the structure Z → X → Y and the determi-

nistic relation X = f(Z). Two conditional independen-
cies follow:

Z⊥⊥Y | X & X⊥⊥Y | Z. (3)



We call Y and Z information equivalent with respect to
X (Lemeire, 2007). Since X 2Y , this a violation of the
intersection condition (Pearl, 1988). The first equation
comes from the Markov condition, the second is implied
by the functional relation. X is completely determined
by Z, so Z has all information about X . Knowing Z
therefore renders X irrelevant for Y . Information equi-
valences happen when there are deterministic relations,
but also under weaker conditions (Lemeire, 2007).

In the example, we have [X⊥⊥Y | Z] which falsely
suggests that Z separates X from Y and edge X → Y
can be removed. But Z⊥⊥Y | X suggests that Y − Z
can be removed. Removal of both edges results in a non-
Markovian DAG. An ambiguity on the correct structure
is a result. X or Z should be connected to Y to explain
the dependencies. Structures Z → X → Y and X ←
Z → Y are equivalent given the CIs. X − Y and Z − Y
are equivalent edges.

Concluding, CI Z⊥⊥Y | X made it possible to identify
a strict CI that would lead to a false separation. In the
following section we present the general conditions and
prove that they lead to equivalent edges.

3.2.3 Conditions for equivalent edges
When strict CI [X⊥⊥Y |Z] is observed, removal ofX−

Y is only valid when Z is a minimal cut set1 in the true
graph. The following theorem gives the conditions to
recognize a ‘false minimal cut set’. A strict d-separation,
denoted as [X⊥Y |Z], is a d-separation which gives a d-
connection for any proper subset of Z.

Theorem 3 Z is not a minimal cut set for X and Y in
G if for one of the elements U of Z one of the following
d-separations hold in G: (Z’ = Z \ U and T ⊂ V \ Z \
{X,Y })

1. U⊥Y |Z’ or U⊥X|Z’;

2. U⊥Y |Z’,T and U⊥X|Z’,T;

3. [U⊥Y |X,Z”] or [U⊥X|Y,Z”] for some Z” ⊂ Z’;

4. [U⊥Y |X,Z’,T] or [U⊥X|Y,Z’,T].

If none of the d-separations hold, either Z is a subset of a
minimal cut set, or there is a U ∈ Z that forms a triangle
or a v-structure with X and Y .

Proof:
To be a minimal cut set, all elements of Z must lie on a
separate path between X and Y , and all paths between
X and Y must be blocked by Z. With path we mean an
active path in terms of a d-connection. The conditions
happen when Z is not a minimal cut set. Condition (1)

1A cutset is a set of variables which blocks all active paths
between X and Y . A cutset is minimal if no proper subset is a
cutset.

or (2) hold when U is not connected to X or Y with a
separate path. Condition (3) or (4) happen when U is
d-connected to Y via X (by the strictness).

The last part is about what happens when none of the
conditions are met. Conditions (1) or (2) guarantee that
all elements of Z are connected with X and Y via sepa-
rate paths. Next for a cut set, all paths between X and Y
must be cut. If there would be an uncut path via another
node, this node should be added to Z to form a cut set.
The remaining case is whenX and Y are adjacent. Then,
unless U forms a triangle with X and Y , there exists a
subset T which separates U from Y (or X). U can then
be d-separated from Y given X , T and Z’ (condition
(4)) unless they form a v-structure (U → X ← Y ).

The CIs corresponding to the d-separations of the the-
orem can be used to detect false separations. Condition
(1) will be used in the finite sample case discussed in
Section 5. The CIs corresponding to conditions (3) and
(4) result in the presence of equivalent edges, as shown
by the following theorem.

Theorem 4 If G containing edges X−Y and U−Y is a
Markovian DAG for P , [X⊥⊥Y |Z’ ∪ U ] and one of the
CIs corresponding to conditions (3) and (4) holds for U ,
then X−Y and U−Y are equivalent edges.

Proof:
First we prove that G \ X−Y is a Markovian DAG. To
prove this, assume A 0B|S which holds in G but would
not be represented in G \X−Y . For this, the only active
path fromA toB must go viaX−Y and no path may exist
via U−Y . It follows thatA⊥B|S∪X (a). A is related to
X but cannot be related to U since otherwise there would
be a path to Y via U−Y . This could only happen if U is a
collider on the path betweenA and Y . We prove that this
results in a contradiction. From Y → U follows that the
path from U goes towards X to have an active path from
Y to X through U (to represent the dependencies given
by the strict CI). Acyclicity gives then Y → X . The
active path from X to A must then be pointing towards
A for having an active path between A and B. This,
however, creates a path from Y to A via U and X , which
was excluded. HenceA⊥U |S (b). From the given CI and
the CIs following from (a) and (b) follows that A⊥⊥B|S
which results in a contradiction.

Next, by conditions (3) or (4), U could be d-separated
from Y by X . But if we would also remove U−Y , the
dependency X 2Y |Z’ is not present anymore, since the
path from X to Y via U is removed. The graph without
both edges is thus not Markovian. The graph G \U−Y is
also Markovian by swappingX and U in the proof.

The simplest case of Condition (3), with an empty Z”,
was discussed in Section 3.2.2. Fig. 3 gives an exam-
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Figure 3: Example of two equivalent structures. If
X⊥⊥Y |U holds for (a) and U⊥⊥Y |X,T for (b), than both
represent the same CIs. X−Y and U−Y are equivalent
edges, which is denoted in (c).

ple of Condition (4) with a non-empty T. Assume that
the non-Markovian CI [X⊥⊥Y |U ] holds. In that case, the
CPC algorithm will delete edge X − Y . Since at that
point of the algorithm Y is still connected to U , all ob-
served dependencies are explained. But with Markovian
independency U⊥⊥Y |X ∪ T , deletion of edge Y −U re-
sults in a model which cannot explain the dependencies.
We end up with two equivalent structures: one with edge
X−Y , the other with edge Y −U . Both models explain
all dependencies. But the first cannot explainX⊥⊥Y | Z,
the second cannot explain Z⊥⊥Y |X ∪ U .

To simplify the rest of the discussion we will exclude
the equivalences following from a condition with a non-
empty Z” in condition (3) of the theorem. They can be
treated in a similar way, but are much rarer.

Assumption 5 For all strict independencies of the form
[X⊥⊥Y |U ∪ Z ∪ depsetXY ] (with Z’ ⊂ Z):

Y⊥⊥U |X ∪ Z’ ∪ depsetXY ⇒ Y⊥⊥U |X ∪ depsetXY .

3.2.4 Relation to NPC
The necessary path condition (NPC) algorithm (Steck

and Tresp, 1999) was introduced as a robust extension
for the PC algorithm. It states that for each strict con-
ditional independence [X⊥⊥Y |Z] there must exist a path
between X (Y ) and each U ∈ Z not crossing Y (X).
This is similar to the notion described above that the mi-
nimal cutset of two variables needs to be connected to
both variables. The NPC introduces the concept of am-
biguous edges, which is defined as an edge whose pres-
ence depends on the absence of another. In NPC, these
ambiguous regions are resolved by including a minimal
number of ambiguous edges in order to satisfy a maximal
number of independence relations. In our case, ambigu-
ous regions correspond to the equivalences we find be-
tween edges. Instead of forcing them into a DAG struc-
ture, we model the ambiguity explicitly by an f-pattern.
An f-pattern is an e-pattern augmented by edges that are
denoted as PPIRs and subsets of edges denoted as equi-
valent. An oriented PPIR in the pattern is identified as a
PIR.

3.3 Augmented Knowledge Graph
We will use an augmented knowledge graph to model the
causal information. We define an augmented knowledge
graph (AKG) (Eberhardt, 2008) as a graph containing the
following relations between any two variables X and Y :
X Y , X → Y , X−Y , X− (S)−Y andX− (S)→ Y ,
with S a set of sets of variables. Furthermore, edges can
be also related with one another either by a straight line

or a curved line with round endpoints • •.
An f-pattern can be represented using an augmented

knowledge graph by using the following interpretations
for the different relations between variables

X Y Neither X nor Y are direct causes of one another.

X → Y X is a direct cause of Y .

X − Y Either X is a direct cause of Y or reverse.

X − (S)→ Y There is a pseudo-independent causal re-
lationship between X and Y with ∀D ∈ S, D is a
depset for the PIR.

X − (S)− Y There is either a pseudo-independent, di-
rect causal or no relation between X and Y

and the following interpretations for the relation between
edges:

X −−Y−− Z The triple < X,Y, Z > is unfaithful.

X −−Y−
• •
− Z The edgesX−Y and Z−Y are equivalent.

4 The Very Conservative PC Algorithm
The Very Conservative PC algorithm (VCPC) adds to

CPC the rules of S2’ to S2 (Alg. 2) and replaces Part
II with Part II’ (Alg. 3). Besides recording the sepsets
for pairs of variables, it will also record depsets. The
algorithm returns an f-pattern. When we speak about ad-
jacencies, these special edges are also considered. Non-
equivalent and non-PPIR edges are called normal edges.

Theorem 6 (Correctness of VCPC) Consider a graph
G, a JPD P generated by G and I(P ), the set of CIs of
P : if minimality, triangle-faithfulness and assumptions 1
and 5 hold for P , the algorithm will, based on I(P ), re-
turn an f-pattern describing a set of DAGs that includes
G. The algorithm is not trivial; it does not always return
the set of all DAGs.

Proof:
1) Assume adjacency faithfulness:
Given adjacency faithfulness, the only difference with
CPC during the adjacency search is that in step S2’[II]a
for each true v-structureX → Z ← Y , such that X⊥⊥Y ,
a PPIRX−(Z)−Y is added. During the first part of the
orientation phase these PPIRS are temporarily removed



Algorithm 2 VCPC algorithm S2’

[I] Before testing whether X⊥⊥Y |S holds, check the
following:

a When X − Y is a PPIR, add depsetXY to S.

b IfX−Y has an equivalent edgeX−Z or Y −Z
and Z is a member of S, skip the test.

[II] If the independence test returns X⊥⊥Y |S, do the
following before removing the edge:

a If S is empty, look for a T in Adj(X) ∪ Adj(Y )
for which X 2Y | T . If such a T exists, do not
remove the edge, denote it as a PPIR with depset
T .

b If S is not empty, test for all Z ∈ S whether
X⊥⊥Z|Y ∪depsetXY and Z⊥⊥Y |X∪depsetXY .
If for a Z, one of both independencies hold, do
not remove edge X − Y and do the following.
Assume the first independency is found (if the
second independency holds, just swaps X and Y
in the following.). (1) If X − Z has been re-
moved due to d-separation by respectively Y or
X , use this edge for constructing all sets S in
S2 and add the edge back to the graph and go
to (3). (2) If X − Z has been removed due to
some other d-separation, leave edge X − Y in
the graph, but do not qualify it as equivalent. (3)
If Y 2Z|depsetXY , denote X − Y as equivalent
to X − Z in the graph.

to discover the v-structures. As a result in step S5a, the
PPIR is removed and the correct structure is found. The
correctness as well as the non-triviality follows then
from the correctness and non-triviality of CPC, proven
by (Ramsey et al., 2006).
2) No adjacency faithfulness:
We have to prove that no edge is deleted based on
non-Markovian CIs, and that no mistakes are made
during orientation.
2.1) No missing edges
A) Assume X − Y in correct graph and X⊥⊥Y :
In step S2’[II]a, the algorithm looks for a variable T
such that X 2Y |T . The existence of T follows from
Minimality. Therefore the edge X − Y will be replaced
by a PPIR. Now, we show that this PPIR is not removed
from the graph, which can only happen when there is a
v-structure. If a PPIR would be removed based on the
existence of a v-structureX → Z ← Y for some Z, then
this indicates that the triangle faithfulness assumption
is not satisfied. The removal of a PPIR in this case is

Algorithm 3 VCPC algorithm Part II’

Part II’ Orientation.

• Perform all of the following steps until no more
edges can be oriented:

Remove the PPIRs from G;

Perform S3’ as explained in (Ramsey et al.,
2006), except that unshielded triples containing
an equivalent edge are not considered;

Perform S4 from the original algorithm on non-
equivalent edges;

Add the PPIR edges back G;

S5 Go through all PPIRs. Look for triangles con-
sisting of normal edges and PPIRs in which for
each PPIR the opposite variable in the triangle is
a depset.

a If the triangle contains two normal edges
which form a v-structure, remove the PPIR.

b If the triangle only contains one normal edge
which is directed, direct the PPIR that con-
tains the node to which the arrow of the nor-
mal edge is pointing, label the PPIR as a PIR
and remove the other PPIR from the graph.

c For all oriented edges D → A in G for
which only A belongs to the triangle, check
whetherA andD form a faithful triple and a
v-structure with one of the two other nodes
of the triangle (as in S3 of CPC). When tes-
ting the triple A, B and D, add depsetAB

to the conditioning set of the independence
tests. If a v-structure is found, orient the two
triangle edges containing A towards A and
delete the third triangle edge if it is a PPIR.

an immediate consequence of the triangle faithfulness
assumption which dictates that the direction of one of
the arcs in the triangle imposes a v-structure. We do not
orient v-structures containing equivalent edges, since a
v-structure based on an equivalent edge which is not in
the true graph could lead to erroneous deletion of a PIR
when the equivalent edge appears in a triangle with the
PIR.
B) Assume X−Y in correct graph and X⊥⊥Y |S, S 6= ∅:
Take Z ∈ S. Because of triangle faithfulness, Z cannot
be adjacent to both X and Y , say it is not adjacent to
X . Z can then be d-separated from X which gives



X⊥⊥Z|Y ∪ U. If U is not empty, from Assumption 5 it
follows that X⊥⊥Z|Y . Edge X − Y is not removed. If
U is empty and X 2Z|Y , edge X − Y will be removed
temporarily. It will be added back when X⊥⊥Z|Y ∪U is
discovered at a later stage.
C) Non-triviality is a direct consequence of the deletion
of an edge X −Y if for ∀S ⊆ {X,Y } the independency
X⊥⊥Y |S holds.
2.2) Correct conservative orientation:
a) Orientation in the first step of the VCPC orientation
phase (II’) is only based on non-equivalent edges and
non-PPIRs. So the correctness of CPC proves the
correctness of these orientation steps in our algorithm.
b) We do not orient any edges based on equivalent edges.
c) Both S5b and S5c trigger when there is a known
orientation of a normal edge inside a triangle with (a)
PPIR(s) (S5b) or when the orientation of an edge in such
a triangle can be inferred (S5c). A direct consequence
of triangle faithfulness is that there is a v-structure at
the node of the triple which has an incoming arrow.
So the correctness of orientation follows from triangle
faithfulness.

5 Finite Sample Case

In this section we consider the finite sample case in
which the independence oracle can make errors. Let’s
assume that the oracle for measuring CI is based on esti-
mating the Dependency Strength (DS) and using a thres-
hold for deciding independency. The smaller the sample,
the more the estimated DS can deviate from the true va-
lue. A higher threshold is used for smaller sample sizes
so that true independencies are not misclassified as de-
pendencies. But this implies that the weaker a (condi-
tional) dependency is, the more likely it gets misclassi-
fied as an independency. This is especially true as the DS
becomes lower than the threshold. The oracle will only
detect dependencies that are sufficiently strong. The fol-
lowing three cases should be considered.

5.1 Weak edges.

An edge X−Y with a small DS(X;Y ) can still have
a high DS(X;Y |Z) when conditioned on one of the
other parents, as is shown by the PIRs. A PIR still con-
tains a lot of information, despite the marginal indepen-
dence. Our extensions overcome missing PIRs or quasi-
PIRs (edges that look like PIRs due to the finite sam-
ple size). On the other hand, if both DS(X;Y ) and
DS(X;Y |OthPa(X−Y )) are small, we cannot over-
come overlooking such edges, which we call weak edges.
Limited data gives limited precision.

5.2 Near-to-unfaithfulness.

In general, dependencies with a low DS lead to near-to-
unfaithful situations. Faithful distributions can come in-
finitely close to the unfaithful cases. This leads to the
same CI patterns as in the unfaithful cases.

5.3 Weakening by conditioning.

A third way in which limited samples disrupt the learning
is that an increased cardinality of the conditioning set re-
duces the robustness of most independence tests (Spirtes
et al., 1993, p.116). We call this effect ‘weakening by
conditioning’, which results in strict CIs not correspond-
ing to minimal cut sets. They can be detected by the CIs
corresponding to the conditions of Theorem 3.

6 Experimental results

To illustrate the adequacy of our extensions, simulations
were performed on linear Gaussian and binary models.
Experiments were performed on 100 randomly selected
DAGs with d nodes and d edges, where d is randomly
chosen between 5 and 25. For each such graph, a ran-
dom structural equation model was constructed by selec-
ting edge coefficients randomly uniformly from [0.1, 1]∪
[−1,−0.1] and the variance of the disturbance terms was
chosen randomly from [0.01, 1]. A random data set of
1000 cases was simulated for each of the models, to
which the PC, CPC and VCPC algorithms were applied
with depth 2 and significance level α = 0.05 for each
independence test based on Fisher’s Z transformation of
partial correlation. The output graph was compared to
the Markov equivalence class (MEC) of the true DAG.
Similar experiments were performed with Bayesian net-
works defined over a set of binary variables and ran-
domly chosen conditional probabilities. The Chi-Square
test was used as independence test.

The table on the next page shows the outcomes ave-
raged over all experiments and relative to the number of
nodes (percentages). Correct edges are the edges of the
MEC of the true graph that appear as normal edges in the
f-pattern. PPIRs and equivalent edges in the f-pattern are
counted as ambiguous edges. False negative edges are
edges in the MEC that do not appear in the f-pattern, not
as a normal edge and not as an ambiguous edge. Weak
edges are false negatives whose nodes are marginally in-
dependent and independent conditional on the other pa-
rents. False positive edges appear as normal edges in the
f-pattern, but not in the MEC. If the nodes of a false po-
sitive are not d-connected in the MEC, they are classified
as ‘not connected’.

The learning performance of the orientation is evalu-
ated by looking at edges appearing in both the MEC and
the f-pattern. Edges having the same orientations in both
are counted as correct orientations, when not oriented in



PC CPC VCPC
Edges
Correct 76.7 76.2 77.9
Ambiguous 0.0 0.0 74.4
False negatives 23.2 23.8 8.1
Weak 3.7 4.5 3.6
False positives 4.1 4.3 11.8
Not connected 2.9 3.1 9.3
Orientations
Correct 25.3 29.8 36.6
Ambiguous 3.6 16.5 47.6
Wrong 19.9 2.1 3.7
False positives 15.1 2.9 3.9

both or only in f-pattern as ambiguous. Wrong orienta-
tions appear as oriented in both, but in the opposite di-
rection. False positives are arrowheads appearing in the
f-pattern but not in the MEC.

The results show that the difference between the PC
and CPC lies clearly in the reduction of the false positive
arrowheads, although we notice an increase in false neg-
atives. The VCPC algorithm clearly reduces the number
of false negative edges. If we consider that weak edges
cannot be identified, the performance gain is even more
drastic. By subtracting the number weak edges from the
false negatives, the number of false negatives drops from
19.5%/19.3% for PC/CPC to 4.5% for VCPC. This drop
is at the expense of ambiguous edges and more false pos-
itives. The latter can be explained by accidental correla-
tions.

Accidental correlations lead to false negative inde-
pendence tests - the oracle qualifies a Markovian CI as
dependent due to accidentally-correlated data. VCPC
is conservative about dependencies, it will not remove
edges if there is no alternative path to explain a de-
pendency. Take nodes that are not d-connected in the
true graph (‘not connected’ in the table), but are acci-
dently correlated. If this accidental correlation is above
the threshold, the oracle will qualify it as a depen-
dency. In the following steps, when conditioning hap-
pens on other variables, the weakening-by-conditioning
effect will bring the measured dependency strength be-
low the threshold and remove the ‘accidental’ edge. This
happens with PC and CPC.

Finally, the experiments showed that the standard de-
viation for the false positive and negative edges is almost
as high as the average, which points to a high perfor-
mance fluctuation from one experiment to another.

7 Conclusions

We cannot rely on adjacency faithfulness when con-
structing robust learning algorithms. We showed that

under triangle faithfulness, violations can be detected
by two patterns: potential pseudo-independent relations
(PPIRs) and equivalent edges. Based on both patterns,
a set of DAGs can be identified that are indistinguish-
able from the perspective of the CIs. Just like the
Conservative PC algorithm detects and treats failures of
orientation-faithfulness, our Very Conservative PC algo-
rithm detects violations of adjacency-faithfulness.

In the finite sample case, weak conditional dependen-
cies can be wrongly classified as CIs by the oracle. This
leads to near-to-unfaithful cases, weakening by condi-
tioning and weak edges. The two first are treated, mis-
sing weak edges should be accepted. Since weak edges
and triangle unfaithfulness cannot be detected, we be-
lieve that this analysis shows the natural bounds of what
can reliably be learned under causal sufficiency.
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