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Abstract

The main source of complexity problems for large in�uence diagrams is that the last
decisions have intractably large spaces of past information. Usually, it is not a problem
when you reach the last decisions; but when calculating optimal policies for the �rst
decisions, you have to consider all possible future information scenarios. This is the curse

of knowing that you shall not forget. The usual approach for addressing this problem
is to reduce the information through assuming that you do forget something (LIMID,
(Nilsson and Lauritzen, 2001)), or to abstract the information through introducing new
nodes (Jensen, 2008). This paper takes the opposite approach, namely to assume that
you know more in the future than you actually will. We call the approach information

enhancement. We reduce the future information scenarios by adding information links.
We present a systematic way of determining information links to add.

1 Introduction

As opposed to decision trees, in�uence diagrams
are easy to enter to a computer. Hence, the hard
job is to establish a solution: a set of optimal
policies {δi}, one for each decision Di. There
are several algorithms for solving IDs (Olmsted,
1983) (Shachter, 1986),(Shenoy, 1992), (Jensen
et al., 1994), but the principle behind them all
is dynamic programming starting with the last
decision. That is, �rst an optimal policy for the
last decision is determined. Next, this policy
is represented somehow, and the optimal pol-
icy for the second last decision is determined by
using the policy for the last decision with the
aim of forecasting the expected utility. The way
it is performed is through variable elimination:
all variables are successively removed from the
graph, and when a variable A is removed, the re-
sulting graph will hold a link between any pair
of A's neighbors. For IDs the elimination order
has to respect the reverse (partial) temporal or-

dering induced by the structure of the ID. We
assume the reader to be familiar with standard
concepts and methods for probabilistic graph-
ical models (d-separation, triangulation, junc-
tion trees).

The solution phase may be very demanding
with respect to time and space, but it is an o�-
line activity where you are not bound by tough
resource constraints. The complexity problem
arises when you eliminate a variable A, and you
have to work with a joint table over an almost
too large set of neighbors of A.

The next task is to represent the solution.
The policies in the solution may have very large
domains. Take for example the last decision in
a sequence of ten. Then the policy δ10 is a func-
tion whose domain may include all previous ob-
servations and decisions.

For illustration, look at Figure 1. The domain
for δ4 contains 11 variables. This means that
variable elimination will have to deal with tables
with 1011 entries. It is an o�-line activity, and
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Figure 1: An in�uence diagram over variables
with ten states.

you may succeed by spending much time, space
and exploit sophisticated machines and/or cloud
computing. Although it may seem intractable
to represent δ4 for fast online access, it is not a
problem: the ID itself is a very compact repre-
sentation of a policy for the last decision. When
you have to take the decision D4, you know the
state of the information variables, and it is an
easy computational task to �nd an optimal de-
cision.

The problem concerns the �rst decision.
When taking the �rst decision you must antici-
pate what you will do when taking the last deci-
sion. However, you do not know the information
available at that time, and therefore you in prin-
ciple have to work with the joint probability of
all the unknown information variables (includ-
ing future decisions). This is what we call the
curse of knowing that you shall not forget.

We consider a solution of an in�uence diagram
as a representation of a set of policies. The pol-
icy for the �rst decisions may be represented as
a look-up table and the policies for the last deci-
sions may be represented as in�uence diagrams.
Usually, the domain of the �rst decision is not
extremely large, so you may o�-line compute an
optimal policy, which can be stored for fast ac-
cess. We shall address the decisions in between,
and we construct in�uence diagram representa-
tions, where policies of future decisions are ap-
proximated through reduction of their domain
(see Figure 2 for an illustration).

If the ID in Figure 2 is used to represent the
policy δ7, then the nodes P1 to P6 are known.
That is, the state of these nodes are entered be-
fore the solution algorithm is started, and they
do not contribute to the space complexity of the

solution algorithm. The problem for the situa-
tion in Figure 2 is twofold; the space of the past
for D7 is too large such that δ7 cannot be repre-
sented as a look-up table, and the space of future
information relevant for D10 is so large that an
on-line solution of the ID is not tractable.

The problem has previously been addressed
by an approach, which can be characterized as
information abstraction: you aim at determin-
ing a small set of variables which serve as an
abstraction of the actual information. This may
done with the LIMID approach (Nilsson and
Lauritzen, 2001), where it is assumed that some
information will be forgot in the future, or it
may be done through introduction of new nodes
(like history nodes) through which the informa-
tion is passed (Jensen, 2008).

In this paper we take the opposite approach,
which we call information enhancement : we as-
sume the decision maker to be more informed
than actually will be the case.

2 Information enhancement

Our information enhancement approach consists
of determining a small set of variables, which if
known would overwrite the actual information.
We shall use the terms disclosed and closed for
variables with known state and unknown state,
respectively.

The idea behind information enhancement is
to �nd a cut set S which d-separates the rest
of the information from the relevant utilities.
When S has been determined, we assume it to
be disclosed when taking the future decision.
We shall say that the new information nodes
are enhanced

To illustrate the approach, consider a �nite
horizon partially observable Markov decision
process (POMDP) (Drake, 1962) (see Figure 3).

As the nodes C1 to C7 may be a compound of
several variables, and the observed nodes may
also be a set of variables, we may assume that
all the chance variables have 50 states. Now,
consider the decision D3. The past is too large
for a direct representation of δ3, and the in�u-
ence diagram with the past of D3 instantiated
is also too complex. We can approximate δ3
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Figure 2: The general situation. You are in the middle of a series of decisions (D7); you have
collected much information (P1 to P6), and in order to determine an optimal decision for D7, you
have to anticipate a future decision (D10).
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Figure 3: A POMDP.



by approximating δ6 through enhancing C6 (see
Figure 4), and the largest policy domain when
solving the ID will contain four variables (δ5 has
the domain {D3, C11, D4, C12}) .
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C13C12C11
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C7C6C5C4C3C2C1

Figure 4: C6 is enhanced for D6. With the past
of D3 instantiated, the largest policy domain
contains four variables.

You may also choose to approximate δ5
through enhancing C5 (Figure 5), and the
largest policy domain when solving the ID con-
tains three variables (δ6(C5, D5, C13)).

U6U5U4U3U2U1

D6D5D4D3obsobs

C13C12C11
obs

obsobs

C7C6C5C4C3C2C1

Figure 5: C5 is enhanced for D5. Now, the
largest domain contains three variables.

As a small test of the approach we tried the
three structures above (with only binary vari-
ables) with three di�erent arbitrary parameter
settings, and with utilities after each move as
well as with utility after the last move, only. We
looked at the policy δ3, and for all cases, the op-
timal policy was the same as the approximated
one.

2.1 Maximize uncertainty

Consider the general situation as described in
Figure 2. If we wish to approximate D10 by
information enhancement, we can enhance the
pair (11, 13) as well as (11, 14) - blocking for
everything but 10. (See Figure 6). When dis-
cussing IDs we shall use the terms 'variable' and
'node' interchangeably.

The node 14 is further away from the util-
ity node than 13, and therefore, disclosing 13

will give you more certainty of the expected
utility than would disclosing 14. This means
that adding the information 14's state brings
you closer to the actual knowledge at the time
of deciding D10 than would adding the informa-
tion of 13's state, and enhancing (11, 14) is a
better approximation than enhancing (11, 13).

We have performed a small experiment with
the ID in Figure 2 and approximated δ7 with the
optimal policy from Figure 6. All nodes were
binary. Out of the 64 con�gurations of the do-
main, the policies coincided on 61 cases. For one
case the approximated policy has a tie between
the correct decision and another one, in the two
other cases, the di�erence in EU between the
correct and the approximated decision was 0.001
on a value around 50 (on a scale from 0 to 100).

3 Border and Frontier

In general, we have two decision nodes Di and
Dj (i < j) in an in�uence diagram. The set
of disclosed variables at the time of deciding Di

is denoted P. We should index the set with i,
but for notational convenience we will skip the
indices i and j. The set of nodes becoming dis-
closed between deciding Di and Dj (including
Di) is denoted Inf . P and Inf are the dis-
closed nodes. With i = 7 and j = 10 in Fig-
ure 2 we have that P is the nodes P1 to P6 and
Inf= {D7, D8, D9, 8, 10, 16, 21, 22, 23}. The set
of descendants of Dj is denoted D. Only the
utility nodes in D are relevant for Dj . They are
denoted U . In Figure 2, D= {12, 24, U} and U
= {U}.
The scene is now that the utility nodes of in-

terest are U , and we look for closed nodes, which
if disclosed would turn some nodes in Inf irrel-
evant. That is, we search for cut sets C such
that U is d-separated from Inf given C (we de-
�ne d-separation such that nodes from Inf are
allowed in S). The chance nodes in D can not
be used in such cut sets as this would create a
directed cycle.

The basic idea is to establish two cut sets,
the border and the frontier. The border is the
smallest cut set of non-D chance nodes closest
to U .
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Figure 6: The ID in Figure 2 with the nodes 11 and 14 enhanced.

De�nition 1. A nodeX /∈D belongs to the bor-
der if

• X is a parent of an element of D

• There is an active path from Inf to X

The set of border nodes is denoted by B.
In Figure 2 the border consists of the nodes

{10, 11, 13}.
As none of the descendants of B are disclosed

before deciding Dj we have:

Proposition 1. Inf is d-separated from U
given B
Knowing that B is a cut set, you may go back-

wards from B in the network to create new cut
sets. Actually, all chance nodes on active paths
from Inf to B may be part of a cut set. The
task is to identify the relevant part of the net-
work and for this relevant part to identify good
cut sets for information enhancement.

De�nition 2. A network is regular if there is
no active path from Inf to U involving a con-
verging connection over a node in P or with a
descendant in P.
The network in Figure 2 is regular, and in

the following sections we assume the network in
consideration to be regular.

De�nition 3. The set of information holders,
I, consists of all closed nodes with a directed
path of closed nodes to Inf .
For the network in Figure 2 we have I=

Inf∪{7, 8, 9, 15, 18, 19}.

De�nition 4. A node in I that has a directed
path of closed nodes to U and with no interme-
diate nodes in I is said to belong to the frontier

of Dj . The set of frontier nodes is denoted by
F .

In Figure 2 the frontier of D10 consists of the
nodes {10, 15, 16, 22, 23, D9}.

Theorem 1. I is d-separated from U given F .

Proof. Let V0 ∈ I, U ∈ U , and let
⟨V0, . . . , Vk, U⟩ be an active path given F .

Assume that ⟨V0, . . . , Vk, U⟩ contains a con-
verging connection, and let
Vs−1 → Vs ← Vs+1 be the last converging con-
nection on the path from V0 to U . As Vs /∈ P nor
has a descendant in P, Vs or one of its descen-
dants is disclosed, and hence Vs ∈ I. Therefore,
also Vs+1 ∈ I. When you follow the path to-
wards U you will meet a diverging connection
Vt−1 ← Vt → Vt+1. Then Vt ∈ F , and the
path is not active. Note that you will meet a di-
verging connection at the latest when you reach
Vk → U . We conclude that there is no converg-
ing connections on the path.

Assume that the �rst link is V0 ← V1. Then,
follow the path until you reach a diverging con-
nection. As there are no converging connections
on the path, there must be exactly one diverg-
ing connection Vs−1 ← Vs → X. Then Vs ∈ F
and the path is not active.

To conclude: the active path is directed from
V0 to U , and it cannot contain intermediate
nodes from F . Therefore V0 ∈ F .



From the proof above we can conclude that in-
formation from Inf �ows to U through a path
against the direction of the links followed by a
path along the links. The node, where the di-
rection of the �ow turns, is a frontier node.

3.1 Finding the border and the frontier

There are two obvious candidate sets for en-
hancement, namely B and F . They are deter-
mined through a sequence of graph searches (for
example breath-�rst search). First you deter-
mine D and U , by starting a breath �rst search
from the decision Dj . All chance nodes reached
are labeled D. They are the elements of D, and
the utility nodes are the elements of U . The
nodes in D cannot be enhanced as this will in-
troduce a directed cycle. The non-D parents
of the nodes in D∪U are the candidate border
nodes, and they are labeled CB.

Next, start a backwards breath-�rst search
from each of the decision nodes Di+1, . . . , Dj .
That is, you follow the edges opposite to their
direction. You stop when you meet a previous
decision node or a node in P. Each node you
meet is labeled with an I. Perform a backwards
breath-�rst search from the nodes of D. When
you meet a node X with label I you give it the
label F , and break the search behindX. Finally,
perform a breath-�rst search from F . When you
meet a node X with label CB, change the label
to B and stop searching behind X. The vari-
ous labels for the ID in Figure 2 are given in
Figure 7.

4 Cut sets between frontier and

border

There may be other candidate sets for enhance-
ment than B and F . Actually, any set of nodes
which d-separates the frontier from the border
can be used for enhancement.

Proposition 2. Let ⟨V0, . . . , Vk⟩ be an active

path with V0 ∈ F and Vk ∈ B. Then the inter-

mediate nodes cannot be in D nor in I, and the

path is directed from V0 to Vk.

Proof. The proof of Theorem 1.

De�nition 5 (Free graph). The subgraph G
consisting of F , B and all nodes on a directed
path from a node in F to a node in B is called
the free graph (see Figure 8) .

17

14
13 B

10 B

11 B

15 F

22 F

D9 F

16 F 23 F

Figure 8: The free graph for the ID in Figure 2.

The proposition yields that we can use any
set in G which d-separates F from B. Unfor-
tunately, �nding all possible cut sets may for a
large G be intractable. If that is the case, the
following heuristics can in polynomial time pro-
vide a set of very good candidates for informa-
tion enhancement.

Note that you cannot just perform a �ow anal-
ysis on the directed graph G. In Figure 8, for
example, the set {10, 11, 15, 22} does not block
for the information coming from 16 or 23.

4.1 Cut set heuristics

To indicate that the information is �owing to B,
you extend the free graph with dummy children
Ui of the nodes in B. See Figure 9.

23 F
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U10
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13 B U13

16 F

15 F

Figure 9: The extended free graph for the ID in
Figure 2.

Next, triangulate the extended free graph and
form a junction tree.
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Figure 7: The ID marked after the search algorithms. "D" indicates that the node cannot be
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Figure 10: A junction tree for the extended free graph in Figure 8.



The junction tree will provide separators,
which can be used to determine cut sets. You
look for sets of separators blocking the �ow from
frontier nodes to border nodes. You start in the
leafs with U -nodes and move backwards.
Consider the junction tree in Figure 10. The

separators 10, 11, and 13 d-separate the U -nodes
from the rest. They form B. As 10 is a frontier
node, you cannot block it with nodes further
back in the junction tree. Going backwards from
the clique (10, 13, 14) you meet the separator
(10, 14), and you �nd the cut set (10, 11, 14).
Going backwards from the separator (10, 14),
you meet a clique with the frontier node D9,
and therefore you hereafter have to include D9

in the cut sets. The same happens when you go
backwards from the separator 11. The the new
cut sets {10, 11, 14}, and {10, 14, 17, 23, D9}.

4.2 Irregular networks

If the network is irregular, the search for fron-
tier nodes is more involved. An active path
from Inf to U ∈ U ends with a directed se-
ries Vk → . . .→ U . The �rst node in this series
is a frontier node. For regular networks, the
frontier consists of common ancestors of B and
Inf . For irregular networks we need to de�ne
I di�erently: for X → Y ← Z with Y ∈ I and
with Z ∈ P or with a descendant in P we also
include X in I.

4.3 An iterative procedure

You may choose the nodes in the cut set itera-
tively, and whenever a node has been selected,
you may renew the analysis. In the example for
this paper it is certain that node 10 always will
be part of the domain for δ10. Hence, we need
not look for ways of blocking information com-
ing from 10, and the ancestors of 10 are only
relevant if they are ancestors of other informa-
tion nodes. Actually, for the ID in Figure 2,
inclusion of 10 does not change the analysis be-
cause the only parent of 10 is D9, and it is an
information node.

5 Conclusions and future work

We have established methods for �nding approx-
imate representations of future decisions policies

through information enhancement. The meth-
ods do not determine all possible candidates for
information enhancement. First of all, a good
cut set does not necessarily contain only nodes
between the border and the frontier. That is,
you may go behind the frontier.
Furthermore,we have only treated approxima-

tion of the last decision. Usually, the decision in
question has several future decisions to consider,
and you may look for a combined approximation
of several future decisions.
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