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Abstract

Some sensitivity analyses have been developed to evaluate the impact of uncertainty about
the mean vector and the covariance matrix that specify the joint distribution of the va-
riables in the nodes of a Gaussian Bayesian network (GBN). Nevertheless, uncertainty
about the alternative conditional speci�cation of GBN based on the regression coe¢ cients
of each variable given its parents in the directed acyclic graph (DAG), has received low
attention in the literature. In this line, we focus on evaluating the e¤ect of regression
coe¢ cients misspeci�cation by means of the Kullback-Leibler (KL) divergence.

1 Introduction

GBNs are de�ned as Bayesian networks (BNs)
where the joint probability density of X =
(X1; X2; :::; Xp)

T is a multivariate normal dis-
tribution Np(�;�) with � the p�dimensional
mean vector and � the p � p positive de�nite
covariance matrix using a directed acyclic graph
(DAG) to represent the dependence structure of
the variables.
As in BNs, the joint density can be factor-

ized using the conditional probability densities
of Xi (i = 1; :::; p) given its parents in the DAG,
pa(Xi) � fX1; :::; Xi�1g. These are univariate
normal distributions with densities

f(xijpa(xi)) � N(xij�i +
i�1X
j=1

bji(xj � �j); vi)

being �i the marginal mean of Xi, bji the re-
gression coe¢ cients of Xi given Xj 2 pa(Xi),
and vi the conditional variance of Xi given its
parents in the DAG. Note that if bji = 0 then
Xj is not a parent of Xi.
The parameters of the joint distribution can

be obtained from the previous conditional spe-
ci�cation. More concretely, the means f�ig are
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obviously the elements of the p�dimensional
mean vector � and

� = [(Ip �B)�1]TD(Ip �B)�1

(Shachter and Kenley, 1989) where D is a dia-
gonal matrix D = diag(v) with the conditional
variances vT = (v1; :::; vp) and B a strictly u-
pper triangular matrix with the regression coe-
¢ cients bji; j 2 f1; :::; i� 1g.
The speci�cation based on (�;B;D) is more

manageable for experts because they only have
to describe univariate distributions. Moreover,
the DAG can be improved by adding the nume-
rical values of the regression coe¢ cient and con-
ditional variance to the corresponding arc and
node, respectively.
Nevertheless, there can still be conside-

rably uncertainty about parameters. Sensitivity
analysis is an important phase of any modelling
procedure. (Castillo and Kjærul¤, 2003) per-
formed a one-way sensitivity analysis investiga-
ting the impact of small changes in the network
parameters � and �. Alternatively, (Gómez-
Villegas, Main and Susi, 2007) proposed a one-
way global sensitivity analysis instead of consi-
dering local aspects as location and dispersion,
over the network�s output. Also, in (Gómez-
Villegas, Main and Susi, 2008) a n�way sensi-
tivity analysis is presented as a generalization of



the previous one both using the KL divergence
to evaluate the impact of perturbations.
It is well known the KL divergence is an non-

symmetric measure that evaluates the amount
of information available to discriminate between
two probability distributions. We have chosen
it because we want to compare the global be-
haviors of two probability distributions.
The directed KL divergence between the

probability densities f(w) and f 0(w), de�ned
over the same domain is

DKL(f
0 j f) =

Z 1

�1
f(w) ln

f(w)

f 0(w)
dw :

The expression for multivariate normal distri-
butions is given by

DKL(f
0 j f) =

=
1

2

�
ln
j�0j
j�j + tr

�
�
�
�0
��1 � Ip��+

+
1

2

h�
�0 � �

�T �
�0
��1 �

�0 � �
�i
;

where f and f 0 are densities of normal distri-
butions Np(�;�) and Np(�0;�0) respectively.
In general, if X = (X1; X2; :::; Xp)

T is a ran-
dom vector normally distributed with parame-
ters (0;�) where the covariance matrix is ina-
ccurately speci�ed, the e¤ect of a perturbation
�p�p measured in terms of a directed Kullback-
Leibler divergence can be expressed as follows

DKL(f jf�) =
1

2
[ln

j�j
j�+�j + tr(�

�1(�+�))]

= �1
2
[ln jIp+��

�1j � tr(���1)] �

� 1

4
tr(��1�)2 =

1

4
jj��1�jj2F =

=
1

4

pX
i=1

�Ti (�
�1)2�i

being f� the density function with the per-
turbed covariance matrix �+�, �i (i = 1; :::; p)
each of the columns of�, with the necessary res-
trictions to get symmetric and positive de�nite

matrices �+� and ���1, jj � jjF the Frobenius
matrix norm and tr (�) the trace function.
However, as the directed KL divergence

DKL(f
0 j f) can be interpreted as the infor-

mation lost when f 0 is used to approximate f ,
in the following sensitivity analyses f has to be
the original model and f 0 the perturbed one o-
pposite to previously used divergence.
Herein we focus on the repercussion of a mis-

speci�ed Bp�p matrix, while the rest of the con-
ditional parameters are known. To evaluate per-
turbation e¤ects, the proper directed KL diver-
gence is used in all the studied cases.
The paper is organized as follows. In Sec-

tion 2 the problem is stated and analyzed for
constant errors. In Section 3 random perturba-
tions are considered; some examples illustrate
the behavior of the proposed measure for both
local and global uncertainty.

2 Fixed misspeci�cation of B

Let f be the density of a multivariate normal
distribution Np(�;�) with conditional parame-
ters �;B and D. Denoting by �B the matrix
with additive perturbations on B and fB the
corresponding perturbed density Np

�
�;��B

�
,

where

��B �
�
(Ip �B��B)

�1�T D(Ip�B��B)
�1

(see (Susi, Navarro, Main and Gómez-Villegas,
2009)), the KL divergence for comparing two
covariance matrices when the means are equal
is

DBKL
�
fB j f

�
=
1

2

h
trace

�
�
�
��B

��1�� pi .
(1)

It should be noted that as Ip �B and Ip �B�
�B are upper triangular matrices with diagonal

entries equal to one then ln j�
�B j
j�j = 0.

Now, given that

�
�
��B

��1
= Ip �

�
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�
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trace
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��B(Ip �B)�1��1
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=

= trace
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�
the divergence in (1) can be restored as

DBKL
�
fB j f

�
=

=
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[p� 2trace
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+trace
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Note that (Ip � B)�1 is an upper triangular
matrix with diagonal entries equal to one and
�B(Ip � B)�1 is an upper triangular matrix
with diagonal entries zero.
Under the same assumptions, if �(i) denotes

an (i � 1)-dimensional vector of local errors in
node i � produced by an erroneous estimation
or elicitation of the node i with its parents re-
lationships, the perturbation matrix on B, with
only this error source is

�B;i =

0BBBBBBBBBBBBB@

i
0 � � � 0 �(i)1 � � � 0
...
. . .

...
...

...
...

0 � � � 0 �(i)i�1 � � � 0
0 � � � 0 0 � � � 0
...

...
...

...
. . .

...
0 � � � 0 0 � � � 0

1CCCCCCCCCCCCCA
:

Thus, denoting fB;i as the density with coe¢ -
cients matrix B +�B;i, the e¤ect on the joint
distribution can be expressed by

DB;iKL

�
fB;i j f

�
=
1

2

h
tr
�
�T
B;i��B;iD

�1�i
=

=
1

2vi

i�1X
k=1

�(i)ktr
�
�(i�1)k

�
�(i)k

�T� , (3)

i = 2; ::::; p , being �(i�1)k the k-th column of
the submatrix �(i�1) built with the �rst i � 1
rows and columns of �. The local perturba-
tion divergence in (3) also may be written in

the form:

DB;iKL

�
fB;i j f

�
=

1

2vi

i�1X
k=1

�(i)k


�(i�1)k; �(i)

�
=

=
1

2vi
�T(i)�(i�1)�(i) =

=
1

2vi



U(i�1)�(i)


2
2

with U = (Ip �B)�1 and the submatrix U(i�1)
determined by the �rst i� 1 rows and columns
of U.
Returning to the measure of interest,

DBKL
�
fB j f

�
in (2), it can be immediately ob-

tained that

DBKL
�
fB j f

�
=

pX
i=2

DB;iKL

�
fB;i j f

�
=

=
1

2

pX
i=2

1

vi
�T(i)�(i�1)�(i) . (4)

Then, the total e¤ect can be expressed as the
sum of individual e¤ects and consequently, the
global sensitivity analysis can be performed
through local analyses of nodes. Some direct
results may be useful in applications:

� If all the components in �(i) are equal to � ,
it follows

DB;iKL

�
fB;i j f

�
=
�2

2vi

i�1X
k=1

i�1X
t=1

�tk

� The possibly erroneous arc deletion from
node j to node i having bji 6= 0, would
yield

DB;iKL

�
fB;i j f

�
=

1

2vi
b2ji�jj

� The e¤ect of arc inclusion from node j to
node i introducing b�ji is also

DB;iKL

�
fB;i j f

�
=

1

2vi
b�2ji �jj

These last two cases describe the impact of
the conditional and marginal variances for an
uncertain knowledge of the exact model giving
the distance between DAGs obtained by adding
or removing arcs.



Figure 1: DAG with regression coe¢ cients on
the arcs

Example 1. Let us consider the GBN in Fi-
gure1 with parameters:

� = 0;B =

0BBBBBBBB@

0 0 0 1 0 0 0
0 0 0 2 2 0 0
0 0 0 0 1 0 0
0 0 0 0 0 2 0
0 0 0 0 0 2 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

1CCCCCCCCA
D = diag (1; 1; 2; 1; 4; 1; 2) :

Using that

� = [(I7 �B)�1]TD(I7 �B)�1

the covariance matrix is

� =

0BBBBBBBB@

1 0 0 1 0 2 2
0 1 0 2 2 8 8
0 0 2 0 2 4 4
1 2 0 6 4 20 20
0 2 2 4 10 28 28
2 8 4 20 28 97 97
2 8 4 20 28 97 99

1CCCCCCCCA
:

The divergences re�ecting the e¤ect of each arc
removal are shown in Figure 2. It is observed
that divergence increases as the depth of the
node grows with a maximum in the arc from X6
to X7. Therefore, it gives us information about

Figure 2: Measure of deviation for each arc re-
moval

the di¤erence between the original GBN and the
particular networks obtained by means of the
cancellation of some regression coe¢ cients.

3 The random case

The expression (4) relates easily, global e¤ect to
local errors e¤ects due to no interaction. Now,
we are going to replace the hypothesis that �B

is known by the assumption that it is a ran-
dom matrix. The main aim is using the relation
(4) to evaluate the impact of uncertainty in B
for a GBN. Both this measure and its value for
di¤erent nodes can be useful to point the most
sensitive nodes so as to compare structures with
respect to uncertainty sensitivity.
If we suppose each vector �(i) is distri-

buted independent from the remaining errors
as Ni�1 (0;Ei) ; i = 2; :::; p, while the common
value v1 = v2 = � � � = vp = v is known, each
random variable �T(i)�(i�1)�(i) is a quadratic
form in normal variables with a chi-squared dis-
tribution with i�1 degrees of freedom �2(i�1), if
and only if Ei�(i�1) is a symmetric idempotent
matrix of rank i� 1 (Rencher, 2000).
Also, if Y is a random vector with mean vec-

tor �, covariance matrix � andMp�p is a non-
random matrix, then (Rencher, 2000)

E(YTMY) = �TM�+ tr(M�)



V ar(YTMY) = 4�TM��+2tr((M�)2). (5)

Thus, it results that the mean of the random
variable DBKL

�
fB j f

�
is

E
�
DBKL

�
fB j f

��
=
1

2v

pX
i=2

tr
�
�(i�1)Ei

�
.

If we express the covariance matrix Ei in
terms of the di¤erence with ��1(i�1), that is

Ei = �
�1
(i�1) +Ai ,

then

tr
�
�(i�1)Ei

�
= tr

�
I(i�1) +�(i�1)Ai

�
=

= i� 1 + tr
�
�(i�1)Ai

�
.

It follows immediately that for a positive semi-
de�nite matrix Ai � it could be denoted by
Ei "larger than" ��1(i�1)� the minimum mean
impact is obtained when Ai = 0 being k =
1
2v
p
2 (p� 1) a lower bound for the mean impact

of all the matrices Ei larger than ��1(i�1). More-

over, imposing Ei = ��1(i�1) we could assure each

summand is distributed as a 1
2v�

2
(i�1) because

Ei�(i�1) = Ii�1 is a symmetric idempotent ma-
trix of rank i � 1. The lower bound k can be
considered to de�ne the mean relative sensiti-
vity by

E
�
DBKL

�
fB j f

��
k

=

Pp
i=2 tr

�
�(i�1)Ei

�
p
2 (p� 1)

,

whenever Ei "larger than" ��1(i�1) could be as-
sumed.

3.1 Independent errors

When the hypothesis of independent errors with
common variance �2 can be accepted, that is

Ei = �
2I(i�1); i = 2; :::; p ,

using (5), the quadratic forms of each compo-
nent have �rst and second order moments given
by:

� E
�
�T(i)�(i�1)�(i)

�
= �2tr

�
�(i�1)

�
� V ar

�
�T(i)�(i�1)�(i)

�
= 2�4tr[(�(i�1))

2]

Figure 3: Node divergence from node 2 (red) to
node 7 (yellow) and global divergence (black)

Consequently, under the stated conditions,
we obtain an increasing average e¤ect according
to node depth in the network, independently of
the network speci�cation. Figure 3 illustrates
the random behavior of Kullback-Leibler diver-
gences displaying the empirical cumulative dis-
tribution function (ECDF) for samples from

1

2v
�T(i)�(i�1)�(i) , i = 2; :::; 7 ,

as well as the random global e¤ect for the exam-
ple discussed above. We have used a simulated
sample of size 100; 000, with v = 1 and �2 = 5,
for each case.
In this setting, a reasonable procedure to

evaluate sensitivity to uncertainty in B is to
analyze the normalized ratio

SB (f) � DBKL
�
fB j f

�
=�2 ,

that can be interpreted as the distribution varia-
tion in terms of the uncertainty variation. Ob-
viously, the random divergence DBKL

�
fB j f

�
changes with �2; Figure 4 shows the ECDFs
behavior for some �2 values in Example 1, ex-
hibiting an apparent dominance relation. Ne-
vertheless, the mean as well as the variance of
SB (f) do not depend on �2; more concretely



Figure 4: Empirical cumulative distribution
function of Kullback-Leibler divergences for
GBN in Example 1 with di¤erent independent
errors: "2 = 0:5 (black), 1 (red), 2 (green), 5
(dark blue), 10 (light blue)

� E
�
SB (f)

�
= 1

2v

Pp
i=2 tr

�
�(i�1)

�
� V ar

�
SB (f)

�
= 1

2v2
Pp
i=2 tr

�
�2(i�1)

�
Relying on the moments invariance we propose
to evaluate the GBN sensitivity to uncertainty
in B by

E
�
SB (f)

�
=
1

2v

pX
i=2

tr
�
�(i�1)

�
=

=
1

2v

p�1X
i=1

�ii(p� i);

where �ii denotes the variance of Xi. Then, the
relative contribution of each node to the total
sensitivity measure will be given by

tr
�
�(i�1)

�Pp�1
i=1 �ii(p� i)

: (6)

This result enables us to classify nodes accor-
ding to greatest contribution to global sensitiv-
ity.

Example 2. For the GBN in Example 1 it is
obtained

E
�
SB (f)

�
= 63

Using (6), the numerical results by nodes are

(2) 0.008, (3) 0.016,

(4) 0.024, (5) 0.071,

(6) 0.12, (7) 0.76

Here the most important values are the contri-
bution of the nodes to the global mean norma-
lized divergence, resulting a signi�cantly large
in�uence for node (7) compared to the rest of
nodes in the DAG. Therefore, independent ran-
dom errors in the regression coe¢ cients of nodes
(1) to (5) do not describe very di¤erent joint
models, however, that is not the case for node
(7) and some e¤ort has to be made to bring
some additional information to asses the correct
regression coe¢ cient value.

4 Conclusions

The factorization of the joint distribution in
GBN leads us to an additive decomposition of
the Kullback-Leibler divergence. Then, for mis-
speci�ed regression coe¢ cients, the weight each
node has in the global deviation of the initial
structure can be determined. Modelling uncer-
tainty with independent random errors provides
a highly simpli�ed analysis to achieve an uncer-
tainty sensitivity measure de�nition that can be
easily handled.
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