Variable elimination by factor indexing

Sander Evers, Peter J.F. Lucas
Institute for Computer and Information Sciences
Radboud University Nijmegen
s.evers@cs.ru.nl, peterl@cs.ru.nl

Abstract

It is known that solving an exact inference problem on a Bayesian network with many de-
terministic nodes can be far cheaper than what would be expected based on its treewidth.
In this article, we introduce a novel technique for this, which stores a deterministic node
as an array of function values rather than one of probabilities. We propose a variable
elimination algorithm, including a new elimination heuristic, that maximally exploits this
encoding using factor indexing. A preliminary empirical evaluation gives promising results.

1 Introduction

In general, exact inference on a Bayesian net-
work is known to take O(d“) time, where d
is the number of states per variable (assumed
that these are the same for each variable) and
w is the treewidth of the network’s moral graph
(Dechter, 1999). In the canonical technique
for exact inference, variable elimination (Zhang
and Poole, 1996), this constraint manifests itself
as the minimal size of the largest factor that is
created during the execution of the algorithm;
implemented as a multidimensional array, it has
w dimensions and d entries for each dimension.

When a network contains deterministic
nodes, inference can be much faster. One ex-
ample where this can be seen is the approach
of Chavira and Darwiche (2008), in which a
Bayesian network is transformed into a logical
theory, and inference is performed by counting
the models of this theory. These models should
be consistent with the constraints imposed by
the deterministic nodes. A good model count-
ing algorithm can use these constraints effec-
tively to prune the model search space.

A different approach (Larkin and Dechter,
2003) stays closer to variable elimination. Here,
a factor is implemented not as an array (with an
entry for each possible variable assignment), but
as a list of variable assignments that are nonzero
(sometimes called a sparse array). The length

Figure 1: Fragment of a Bayesian network. Variables A
and M are deterministic (indicated by a double border):
their values follow directly from their parents’ values.
This is reflected in A’s conditional probability distribu-
tion: P(a|z,y) equals 1 if a = da(z,y), and 0 otherwise.

of this list can be much smaller than the size
of the array, but the overhead for multiplying
and marginalizing factors is larger, because the
list has to be searched for values (possibly using
a hash table). With this alternative implemen-
tation of factors, ordinary variable elimination
can be performed.

The approach we present in this article is also
based on a cheaper implementation, but only
of the deterministic factors. For example, con-
sider deterministic variable A in Fig. 1. Conven-
tionally, the corresponding factor is stored as a
three-dimensional array of conditional probabil-
ities P(a|z,y), which can take two values: 1 if
a = da(z,y), 0 if a # da(z,y). Here, da is
the function that determines A given X and Y.
In our approach, we store this function directly,
as a two-dimensional array. If A has n possi-
ble states, this array contains n times as few
elements as the original array of probabilities.



The true merit of our approach, however, lies
not in the efficient space use of the arrays that
make up the definition of the Bayesian network;
it lies in the ability to propagate this efficiency
to the intermediate arrays used in variable elim-
ination. For example, consider the elimination
of variable A from Fig. 1. In conventional vari-
able elimination, this requires the calculation of
> . Plalz,y)P(z|a)P(m|a,y) for each combina-
tion x, y, z, m; a four-dimensional array of which
each element is the result of summing n prob-
abilities. On the other hand, our approach ex-
ploits the fact that

>_a Plalz, y)P(zla)P(ma,y)
= P(z|A=da(z,y))P(m[A=da(z,y),y), (1)

i.e. we construct two low-dimensional arrays
(over variables XY Z and M XY, resp.) and
perform no summation at all. Moreover, we do
not even need to multiply these arrays at this
point yet; we could perhaps first eliminate Z
from the former.

We integrate this operation into wvariable
elimination by expressing it in factor algebra,
a convenient language to describe the ‘bulk op-
erations’ on multidimensional arrays that occur
in most inference procedures. To the multipli-
cation and summation operations usually en-
countered, we add an indexing operation writ-
ten cpd z[A=d4] (for the first of the two arrays
above). This partially indexes the array cpd ,,
which we will define as to contain the probabili-
ties P(z|a), using another array, namely d4. Its
implementation does not require the overhead of
sparse arrays, as no additional data structures
are used.

The remainder of the article has the follow-
ing outline. Sect. 2 summarizes the formal pre-
liminaries for inference on Bayesian networks.
In Sect. 3, we review variable elimination, with
an emphasis on the use of factor algebra. Our
main contribution, factor indexing, is presented
in Sect. 4, followed by an empirical evaluation
in Sect. 5. In Sect. 6, we conclude and propose
future work.

2 Formal preliminaries

A Bayesian network is a triple (V,par,cpd).
The set V = {Vi,...,V,} consists of n discrete
variables; each V; has a finite domain dom(V;).
The function par maps each variable V; to a set
of parents Vpar(;) C V in such a way that there
are no cycles. The set cpd = {cpd;,...,cpd,}
contains, for each variable V}, the family of con-
ditional probability distributions P(v;|vpar(;));
in Sect. 3, we will define this family as a factor
that we designate cpd;. A Bayesian network
defines a joint probability distribution over V:
P(v) = H1§j§n P(Uj‘vpar(j)>-

An inference query is a usually defined as the
conditional probability distribution P(q|e) over
some query variables Q C V given an instanti-
ation e of evidence variables E C V. However,
for simplicity we define an inference query as
the distribution P(q, ) in this article. This dis-
tribution can be derived from the joint distri-
bution by summing out the remaining variables
R=V\(QUE):

P(q,e) = Z P(q,e,r) = Z H P(vj\vpar(j))

reR reR 1<j<n

From this, the conditional distribution can eas-
ily be derived: P(qle) = P(q,e)/ quQ P(q,e).

3 Factor algebra for variable
elimination

In this section, we review the theory of fac-
tor algebra and variable elimination (Zhang and
Poole, 1996), into which we will integrate our
new factor indexing operation in Sect. 4. Many
inference algorithms, including variable elimi-
nation and junction tree propagation (Lauritzen
and Spiegelhalter, 1988), are implemented using
multidimensional arrays; a factor is a mathe-
matical description of such an array, and factor
algebra is a convenient language to describe ar-
ray operations.

Formally, a factor f over variables V is
a function that maps every instantiation v
of V to a number f(v); an instantiation v =
{Vi=vy,...,V,=v,} is a function mapping each
Vj to a value v; € dom(V;). We refer to the
set dim(f) = V as f’s dimensionality. Thus,



each cpd; in a Bayesian network is a factor with
dim(epd;) = V; UV, ;) and values

dej(vj:vﬁ Vpar(j)) = P(vj ’Vpar(j))

The weight of a factor f is defined as the number
of different instantiations it can be applied to,
and equals the size of the array needed to store
all f’s values:

weight(f) o H |dom (V)]

V; dim(f)

It is also possible to apply a factor to an instan-
tiation e of a subset of its dimensions (E C V):
then the result f(e) is not real number, but a
factor over V \ E. We also find it convenient
to use instantiations containing more variables
than are in the factor’s domain; in this case,
the superfluous variables are just ignored. So,
for example, f(v, Vor1=y) = f(v).

An inference query can then be defined as the
factor infq g:

@an,E(qa e) = P(qa e) = Z H de] (q7 e, I‘)

reR 1<j<n

where we apply each cpd; to a lot of superflu-
ous variables. In fact, infqg is a factor over
QUE and contains results for all instantiations
of E; however, one is usually interested in the
result for specific evidence e. Then, the infer-
ence goal is to calculate the partial instantiation
infqr(e), a factor over Q.

The basic factor algebra we use contains an
operator ® for multiplying two factors, a unit
element 1 for ®, and a summation operator w
that sums out the W dimensions of a factor:

(fO9W) =E f(v)-g(v)
() =1
(Ewhu) = > flu,w)

weW

[«
S

o
S

where we define dim(f ® g) = dim(f) Udim(g),
dim(1) = 0, and dim(Swf) = dim(f) \ W.
Note that we use weW to let variable w range
over all possible instantiations of W. In Sect. 4,
we extend this basic factor algebra.

Algorithm 1: Variable elimination. Initial-
ize the set of factors f; to the conditional
probability distributions. In each iteration,
heuristically choose a variable V;. From the
current set of factors, replace all that have
V; in their domain by their product, with V;
summed out. For the definition of the cost
heuristic, see the running text.
Input:

e Bayesian network
(V,par,{cpdy,...,cpd,})

e evidence e (instantiation of E C V)

e query variables Q C 'V

Output: infg g(e) (a factor over Q)

W :=V\(QUE)
foreach cpd; do f; := cpd;(e)
while W is not empty do
choose V; € W for which the cost of
eliminate(V;) is smallest
eliminate(V;)
W= W {13}

infqr(e) == (Ofall remaining f;}
procedure climinate(V;)
p:=1
foreach f; s.t. V; € dim(f;) do
p=p0Of
delete f;
fi:=3yp

Variable elimination is now formulated as
a procedure (Alg. 1) that stepwise constructs
the factor infq g(e) out of the set of factors
cpdy, ..., cpd,, using above operators. In each
step, all the factors in the current set that con-
tain a certain variable V; are joined together us-
ing ©, after which Xy, is applied to the result.

As for which V; to choose next, Alg. 1 uses a
greedy heuristic: it always takes the one with
We define this cost to be the
size of the largest array constructed in this
step, i.e. weight(p) for the final value of p in
eliminate(V;). This heuristic is known as the
minweight heuristic; other heuristics are also
possible, but minweight is known in practice to

minimal cost.



Table 1: Laws of factor algebra.

\]

AAA,_\,_\
~— — ~— ~— ~—

fol=f
fOg=g90f
folgoh) =(fog) oh=C){f9h}
YSvEw/f=Ywivf=%Syw/f

Yv(fog =Sy fog if Vedim(f), (6
V ¢ dim(g)

Sy (fOg) = OSyg iV ¢dm(p), (7
V € dim(g)

(f©g)(e)=fle) ®gle) (8)
(Zvf)(e) =%y f(e) if e does not 9)
instantiate V'

perform best when variables have different do-
main sizes (Kjeerulff, 1990). Note that the algo-
rithm can calculate the cost of eliminate(V;) be-
fore actually executing it, as it is not necessary
to construct the array p to determine weight(p).

As a matter of fact, although Alg. 1 can cer-
tainly be read to perform array operations at
factor assignments such as p := p ® f; and
fi := Xy,p, it does not have to perform any
array operations at all. Instead, it can perform
a symbolic construction of a new factor algebra
expression at these points. In that case, the re-
sult of the algorithm is not an array, but a large
symbolic expression which can be evaluated at a
later stage to produce said array. Thus, the in-
ference procedure is divided into a search phase
and an evaluation phase.

Correctness

Factor algebra is not only a tool for expressing
variable elimination concisely, but also for ana-
lyzing its correctness. Using some general laws
of factor algebra (see Table 1), we can prove
that the factor constructed by Alg. 1 indeed cor-
responds to the factor infq g(e) specified in the
text above. Making use of the definitions of ®
and Yr, we rewrite the definition of infq g into:

infor = Yr () cpd;

1<j<n

Using laws (8) and (9), the instantiation of evi-
dence is pushed into the expression:

infqr(e) = IR @ cpd;(e)

1<j<n

Now, we will prove that the following invariant
holds at the start of each iteration:

infqr(e) =Xw @{all remaining f;}

For the first iteration, this is trivial, as W was
set to R and each f; to cpd;(e). Next, elimi-
nating a variable V; corresponds to the following
rewriting:

Sw @{all remaining f;}

= Sw| Ofi © OF
Vigdim(f;) Viedim(f;)

=Sww | Ofi © 2w OF
Vigdim(f;) Viedim(f;)

in which the product is restructured using (3,4)
into a group that does not contain V; and one
that does; next, distributive law (7) is used to
push the summation over V; into the expression.

The bottom expression corresponds to the in-
variant for the next iteration, where W is set to
W\ {V;}, and the f; factors with V; € dim(f;)

have been replaced with
fi=%v, (O f
Viedim(f;)

After the last loop, W is empty, so

infqr(e) = @{all remaining f;}
which is what we wanted to prove.

4 Factor indexing

This section presents the main contribution of
this article: factor indexing, and its integration
in variable elimination. We propose a new fac-
tor algebra operator and laws, and extend Alg. 1
into Alg. 2, which uses them to eliminate deter-
ministic variables.



A variable Y € V is called deterministic if its
value is functionally determined by the value of
its parents (here X C V). This means that
its conditional probability distribution has the
following form:

1 ify=dy(x)
0 iy # dy(x)

where dy is a factor over X with values in
dom(Y"), which we call Y’s deterministic factor.

To account for deterministic variables, we ex-
tend the definition of a Bayesian network as fol-
lows: next to the set cpd of conditional prob-
ability distributions for non-deterministic vari-
ables V1,...,V,,, we include a set d of factors
for deterministic variables V11, ..., V,. Factor
d; is then a factor over par(V;) with values in
dom(V}). So, unlike a cpd; factor, V; ¢ dim(d;).

Like dy and cpdy above, every deterministic
factor d has a ‘probabilistic representation’. Al-
though we want to keep a factor deterministic
whenever possible during variable elimination,
sometimes it is unavoidable to translate it to its
probabilistic representation. For this, we define
the factor algebra operator 1y —g:

deY(Y:yax) = {

def if v =d(u
Lv=a(V=v,u) = {(1) ifz ” dgui

where dim(d) = U, and dim(1y—y) = {V}UU.!
So, translating a network with deterministic
variables into a conventional one can now be
defined as cpd; = ly,—q; for all m < j < n.
Consider the nodes A and M in Fig. 1 with
the following deterministic factors:

da(X=z,Y=y)=z+y
dy(A=a,Y=y)=a-y

Conventionally, the probabilistic representa-
tions of d 4 and dj,; are used for variable elimina-
tion. For example, when eliminating variable A,
the following expression would be constructed:

EA(RA:dA © I[M:d]u (O] deZ)

'From these dimensionalities, it immediately follows
that weight(ly—4) = |dom(V)| - weight(d), so an array
storing the probabilistic representation has |[dom(V')| as
many elements as one storing the deterministic factor.

Let us focus on the values of sub-expression
Ta=a, © Lar=q,,, a factor over XY AM:

(Ma=q, © Mpr=q,, ) (X=2,Y=y, A=a, M=m)

)1 if a=z+y Am=a-y
~ 10 otherwise

Note that we can rewrite the condition into
a=z+y N m=(z+y)-y, so m depends on z in-
stead of a. This suggests that we can rewrite
the factor into 14—4, ® ]lM:dgw’ with

dy(X=2,Y=y) = (z+y)y
Similarly, ¢pd, can be transformed into
epd'y(X=x,Y =y, Z=2) = P(Z=z| A=z+y)

Neither d); nor cpd’, contain variable A any-
more. Therefore, after rewriting the variable
elimination expression using these new factors,
the summation over A can be pushed inwards:

YA(Tazd,y © Lyj—g,, © cpdy)
=YA(la=g, ® ]lM:d?u ® cpd'y)
=3alazq, © Ly—a, © cpdy

Examining the first factor, we see that

(Zala=a,)(X=z,Y=y)

= Z (1iff a=z+y) =1
a€dom(A)

because for each combination x,y there is only
one a s.t. a=z+y. Thus, we conclude that

Ya(lazds © Ly=dy © cpdy) = Ly—g,, © cpdy

where the right hand side represents a much
cheaper way to eliminate A than the left hand
side. Note that this is the factor algebra equiv-
alent of Eq. 1 (see Introduction).

In order to integrate this rewrite rule into
variable elimination, we will now formalize the
transformations dy; = d); and cpd ; = cpd’y in
factor algebra.

We do this by introducing a new operation of
the form f[V=d|, where factor f is indezed by
factor d in dimension V:

flV=d(u) = f(u,V=d(u))



where the dimensionality of resulting factor
flV=d] is (dim(f) \ {V}) U dim(d)— so u is
an instantiation over these variables.

With this operation, we can define the above
transformations as follows:

d’M = dp[A=d4]
cpd'y = cpd z[A=d ]

Note that, contrary to conventional indexing,
the dimensionality of f[V'=d| can be larger than
that of f. For example, dim(cpd’,) = XY Z,
while dim(cpd ;) = AZ.

To the laws of factor algebra (Table 1), we
add the following:

flV=d] =3y (f © ly=q) (10)
(fogV=d = f[V=d] ©g[V=d (11)
Ly jy—g = lw—s[V=d] ifV£W (12)

Using these, we can generalize the rewrite rule
above. The elimination of deterministic variable
V; from a product of factors f; and deterministic
factors d; can be rewritten as follows:

v | =, © O fi © () ly=g
Viedim(f;) V;edim(d;)

= O filVi=d] © () ly,_gpieay (13)

V;edim(f;) Vjedim(d;)

We apply this in a variable elimination algo-
rithm with factor indexing (Alg. 2). It has the
same structure as Alg. 1, but is extended as fol-
lows:

e For a deterministic variable V;, we store d;
instead of 1y,—g,.

e To eliminate a deterministic variable V;, we
use Eq. 13: we index all currently exist-
ing f; and d; factors over V; by V;=d;, and
delete d; itself.

e Not all deterministic variables are elimi-
nated like this: during the elimination of a
non-deterministic variable V;, all determin-
istic factors over V; have to be expanded to
their probabilistic representation. Also, for
a deterministic evidence variable, its factor
is expanded during initialization.

Algorithm 2: Variable elimination with
factor indexing. Next to the set of factors
fj, maintain a set of deterministic factors d;.
When eliminating a deterministic variable V;
(for which d; still exists), do not replace fac-
tors by their product but index them by d;.
Note: in the absence of deterministic nodes,
the algorithm ‘degenerates’ to Alg. 1.

Input:

e Bayesian network w/deterministic nodes
(V,par,{cpdy,...,cpd,, }, {dm+1,...,dn})

e evidence e (instantiation of E C V)

e query variables Q C 'V

Output: infg g(e) (a factor over Q)

W :=V\(QUE)
foreach cpd; do f; := cpd;(e)
foreach d; do
if V; € E then
| fj = 1y;=a,(e)
else

L di=djle)

while W is not empty do
choose V; € W for which the cost of

eliminate(V;) is smallest
eliminate(V;)
W= W\ {1

ianE(e) := ((O{all remaining f;}) ®
® { 1y,=q, | all remaining d; }

procedure eliminate(V;)

if d; exists then

foreach d; s.t. V; € dim(d;) do
L dj = d;[Vi = di]

foreach f; s.t. V; € dim(f;) do
| fi=flVi = di]

delete d;
else
p:=1

foreach d; s.t. V; € dim(d;) do
pi=pO ly—g;
delete d;
foreach f; s.t. V; € dim(f;) do
p:=p0Of
delete f;
L fi:=%vp




The used elimination heuristic is still the cost
of the next elimination step. However, the defi-
nition of this cost is also extended. If V; has no
deterministic factor d; associated with it, the
cost is still weight(p). If it does, the cost is

> weight(f;[Vi=di]) + Y _weight(d;[Vi=d;])

Viedim(fj) V:L'Edim(dj)

Although space does not permit it here, a cor-
rectness proof can also be given for Alg. 2. The
invariant is:

z'an,E(e) =Yw ((@{all remaining fj}>
© @ { 1y,—q, | all remaining d; })

5 Empirical evaluation

We have implemented the factor algebra de-
scribed above in Python, using the package
NumPy which provides an n-dimensional ar-
ray and executes array operations using fast C
loops (not unlike MATLAB). The ® operator
directly translates to NumPy’s array multipli-
cation, which can handle the situation where
the operands have different dimensions. Index-
ing an array with another array is supported in
NumPy as well.

We perform inference on 4 networks with de-
terministic nodes known from the Bayesian net-
work literature (the students network is from
the UAI'08 evaluation track). We also in-
vestigated 6 generated networks of 100 nodes,
with 30 root nodes and 70 nodes with 2 par-
ents (randomly chosen from earlier generated
nodes). FEach node has randomly generated
probabilities; each of the 70 non-root nodes has
a chance of being deterministic, in which case
we randomly generate a deterministic function.
Each variable has the same domain; between
networks, we vary the domain size (2 or 4).
Also, we vary the fraction of deterministic nodes
(30%, 60%, 90% of the non-root nodes).

For each network, we take medians over 10
runs; in each run, we instantiate 10 randomly
chosen? evidence variables e and choose one

2However, for students, we took the 9 easiest evidence
files from the UAT’08 evaluation.

random query variable ). Then we use algo-
rithms Alg. 1 and Alg. 2 to generate a sym-
bolic expression (a plan) for infq g(e), i.e. we
execute them as a search phase as discussed
in Sect. 3. As it is completely implemented in
Python (without regard for speed), we do not
time this phase; its performance would severely
distort the overall timing results.

We record the cost of the generated plans, i.e.
the summed weight of all the intermediate fac-
tors. In the second phase, we evaluate the plans
and record the (wall clock) duration. The ex-
periments were performed on a machine with a
3GHz Intel Core2Duo processor and 2GB RAM.

Results are shown in Table 2: the factor in-
dexing technique provides speedups ranging up
to 16x. Expectations are confirmed that it
works best with a high fraction of determinis-
tic nodes and/or larger domain sizes. However,
we noticed that the variance in performance be-
tween runs can be high: we suspect that the cur-
rent heuristic can easily guide the algorithm in
the wrong way, and will investigate more robust
heuristics in the future.

6 Conclusions and future work

We propose a new variable elimination tech-
nique for exact inference on Bayesian networks,
in which deterministic variables are eliminated
not by summation but by a factor indexing op-
eration. We emphasize the role of factor alge-
bra, which enables (a) a concise definition of
the algorithm, (b) a straightforward correctness
proof, and (c) a model for defining an elimina-
tion order heuristic in terms of the cost of array
operations. Indeed, our updated heuristic has
little to do with the network’s graph structure
anymore; this is in line with common knowledge
that treewidth is not so important for highly de-
terministic networks.

A preliminary empirical evaluation shows
that the technique performs decently on real-
world networks (small speedups) and good on
randomly generated networks (speedups of 1-
16). We expect much room for improvement
here: first, by developing heuristics that take
into account the actual cost of performing



Table 2: Experimental results. Numbers are median values over 10 random queries.

network # vars plan cost cost impr. eval. time (s) speedup
(det.) Alg. 1 Alg. 2 Alg. 1/Alg. 2 Alg. 1 Alg. 2 Alg. 1/Alg. 2
munin-1 189 (65) 278M 260M 1.00 6.94 7.91 0.935
munin-4 1041 (411) 23.3M 19.2M 1.22 0.481 0.382 1.25
diabetes 413 (24) 13.2M 13.1M 1.00 0.148  0.151 0.994
students 376 (304) 4.32M  14.7K 293 0.205  0.053 4.13
random-2-30 100 (£21) 16.3K 3.85K 291 0.0120 0.0106 1.15
random-2-60 100 (£42) 19.6K 247K 5.82 0.0121 0.0088 1.35
random-2-90 100 (£63) 14.6K 0.711K 15.0 0.0117 0.0064 1.90
random-4-30 100 (£21) 6.28M 2.38M 9.23 0.122  0.0536 5.38
random-4-60 100 (£42) 2.27TM  49.0K 55.1 0.0504 0.0098 5.39
random-4-90 100 (£63) 4.41M 147K 257 0.0908 0.0065 16.3

the different array operations instead of the
size of the resulting array; second, by exploit-
ing low-level machine knowledge to decrease
these actual costs. For example, current CPUs
and GPUs often feature vectorized processing
modes, which we expect can be exploited for the
bulk array operations of probabilistic inference.
When used properly, this might outperform in-
ference techniques for determinism that cannot
be expressed as array operations, e.g. (Chavira
and Darwiche, 2008; Larkin and Dechter, 2003).

Furthermore, we argue that our technique has
much potential for combination with other in-
ference algorithms, e.g. with junction tree prop-
agation (Lauritzen and Spiegelhalter, 1988), re-
cursive conditioning (Darwiche, 2001) and fac-
tor decomposition techniques (Heckerman and
Breese, 1996; Vomlel, 2002; Diez and Galan,
2003).

Acknowledgements

The authors have been supported by the
OCTOPUS project under the responsibility
of the Embedded Systems Institute.  The
OCTOPUS project is partially supported by the
Netherlands Ministery of Economic Affairs un-
der the Embedded Systems Institute program.

References

Mark Chavira and Adnan Darwiche. 2008. On prob-
abilistic inference by weighted model counting.
Artif. Intell., 172(6-7):772-799.

Adnan Darwiche. 2001. Recursive conditioning. Ar-
tif. Intell., 126(1-2):5-41.

Rina Dechter. 1999. Bucket elimination: A unify-
ing framework for reasoning. Artif. Intell., 113(1-
2):41-85.

Francisco Javier Diez and Severino F. Galdn. 2003.
Efficient computation for the Noisy MAX. Int. J.
Intell. Syst., 18(2):165-177.

D. Heckerman and J. S. Breese. 1996. Causal in-
dependence for probability assessment and infer-
ence using Bayesian networks. [FEFE Transac-

tions on Systems, Man and Cybernetics, Part A,
26(6):826-831.

Uffe Kjeerulff. 1990. Triangulation of graphs — al-
gorithms giving small total state space. Technical
Report R-90-09, Dept. of Mathematics and Com-
puter Science, Aalborg University.

David Larkin and Rina Dechter. 2003. Bayesian
inference in the presence of determinism. In C M
Bishop and B J Frey, editors, Proceedings of Ninth
International Workshop on Artificial Intelligence
and Statistics, Key West, USA.

S. L. Lauritzen and D. J. Spiegelhalter. 1988. Lo-
cal computations with probabilities on graphical
structures and their application to expert sys-
tems. Journal of the Royal Statistical Society. Se-
ries B, 50(2):157-224.

Jit{ Vomlel. 2002. Exploiting functional dependence
in Bayesian network inference. In UAI(02, pages
528-535.

Nevin Lianwen Zhang and David Poole. 1996. Ex-
ploiting causal independence in bayesian network
inference. J. Artif. Intell. Res. (JAIR), 5:301-
328.



