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Abstract
We present an extension to Continuous Time Bayesian Networks (CTBN) called Generalized CTBN

(GCTBN). The formalism allows one to model continuous time delayed variables (with exponentially
distributed transition rates), as well as non delayed or “immediate” variables, which act as standard
chance nodes in a Bayesian Network. The usefulness of this kind of model is discussed through an example
concerning the reliability of a simple component-based system. The interpretation of GCTBN is proposed
in terms of Generalized Stochastic Petri Nets (GSPN); the purpose is twofold: to provide a well-defined
semantics for GCTBNin terms of the underlying stochastic process, and to provide an actual mean to
perform inference (both prediction and smoothing) on GCTBN.

1 Introduction

The goal of this paper is to propose a general-
ization of Continuous Time Bayesian Networks
(CTBN) (Nodelman et al., 2005) by allowing
the presence of nodes with no explicit temporal
evolution, called “immediate nodes”. The re-
sulting framework is called Generalized CTBN
(GCTBN) and allows the modeling of processes
having both a continuous-time temporal com-
ponent and an immediate component captur-
ing the logical/probabilistic interactions among
modeled variables.

The possibilities offered by this generaliza-
tion, can be exploited in several applications.
For example, in system reliability analysis, it
is very practical to distinguish between system
components (having a temporal evolution) and
specific modules or subsystems, whose behavior
has to be modeled for the analysis. For instance,
in Fault Tree Analysis (Dugan et al., 1992), ba-
sic events represent the system components with
their failure rates, while non-basic events are
logical gates identifying modules of the system
under examination. In Dynamic Fault Trees
(Dugan et al., 1992), logical gates identifying
sub-modules, can be combined with dynamic
gates, modeling time-dependent dependencies
(usually assuming continuous time) among com-
ponents or sub-modules. Also in this case, it is
very important to distinguish, at the modeling

level, between delayed and immediate entities.
Of course, similar considerations apply in other
tasks as well, as in medical diagnosis, financial
forecasting, biological process modeling, etc.

The paper is organized as follows: Sec. 2 pro-
vides basic notions about the formalisms in-
volved in the GCTBN definition and analysis;
in Sec. 3, the GCTBN formalism is defined; in
Sec. 4, a reliability case study is introduced, to-
gether with the corresponding GCTBN model-
ing; in Sec. 5, a semantic model, based on the
formalism of Generalized Stochastic Petri Nets
(GSPN) (Ajmone et al., 1995) is defined, and
the corresponding model for the case study is
discussed; in Sec. 6, we provide the algorithms
to perform inference on a GCTBN, by means of
analysis on the corresponding GSPN.

2 Preliminary notions

CTBN. Probabilistic graphical models for
reasoning about processes that evolve over
time, allow for a factorization (Lauritzen and
Richardson, 2002) of the state space of the pro-
cess, resulting in better modeling and inference
features. Such models are usually based on
graph structures, grounded on the theory of
Bayesian Networks (BN). When time is taken
into account, the main choice concerns whether
to consider it as a discrete or a continuous di-
mension. In the second case, Continuous Time



Bayesian Networks (CTBN) have been firstly
proposed in (Nodelman et al., 2002; Nodelman
et al., 2005) and then refined in (Saria et al.,
2007).

Standard inference tasks in temporal prob-
abilistic models are prediction and smoothing.
Prediction consists in computing the probability
of a future state, given past evidence (a special
case occurs when the last evidence time point
and the query time are the same and is called
Filtering or Monitoring). Smoothing is the task
of estimating a past state, given all the evi-
dence (observations) up to now. Such tasks can
be accomplished by inference procedures usu-
ally based on specific adaptation of standard
BN algorithms. In case of a CTBN, exact in-
ference may often be impractical, so approxi-
mations through message-passing algorithms on
cluster graphs (Nodelman et al., 2005; Saria et
al., 2007), or through sampling (El-Hay et al.,
2008; Fan and Shelton, 2008), have been pro-
posed.

CTMC. A Continuous Time Markov Chain
(Ajmone et al., 1995) enumerates the possi-
ble system states (nodes) and state transitions
(arcs). A transition is not immediate, but may
occur after a random period of time ruled by
the negative exponential distribution according
to the transition rate. Besides transition rates,
a CTMC is characterized by the initial proba-
bility distribution of its states. There are two
main analyses that can be performed with a
CTMC: steady state and transient analysis. In
the first case, the equilibrium distribution (at
infinite time) of the states is computed, while
in the second case, such a distribution is com-
puted at a given time point.

GSPN are a particular form of Petri Nets, so
they are composed by places, transitions and
arcs (Fig. 2). A place can contain a discrete
number of tokens (place marking), and the cur-
rent state of the system is represented by the
net marking given by the number of tokens in
each place of the net. Transitions are used to
model the system state transitions; a transition
is enabled to fire when a certain net marking
holds, and when the transition fires, a certain

amount of tokens is moved from a set of places
to another one, changing the net marking, so
the system state.

Directed arcs are used to connect places to
transitions and vice-versa, with the aim of mov-
ing tokens when transitions fire. In GSPN, in-
hibitor arcs are also present and connect a place
to a transition with the aim of disabling the
transition if the place is not empty. A cardi-
nality can be associated with an arc in order to
specify the number of tokens to be moved, in
case of directed arcs, or the number of tokens
necessary to disable the transition, in case of
inhibitor arcs.

In GSPN, transitions can be immediate or
timed. Immediate transitions fire as soon as
they are enabled. In case of concurrent imme-
diate transitions, their firing can be ruled by
means of weights or priorities (π). Timed tran-
sitions fire if enabled, after a random period of
time ruled by the negative exponential distri-
bution according to the firing rate. Vanishing
markings are those enabling immediate tran-
sitions; tangible markings are those enabling
timed transitions.

The stochastic process associated with a
GSPN is a homogeneous continuous time semi-
Markov process (Ajmone et al., 1995) that can
be analyzed by removing from the set of pos-
sible markings (states), the vanishing markings
(since the system does not spend time in such
states), and by analyzing the resulting CTMC.
In this way, the analysis of a GSPN can provide
several measures, and in particular the transient
or steady state probability distribution of the
number of tokens in each place.

A GSPN model can be edited and analyzed
(or simulated) by means of GreatSPN (Chiola
et al., 1995); in particular, this tool allows to
set marking dependent firing rates. This means
that the value of the firing rate of a timed tran-
sition, can change according to a set of con-
ditions concerning the current marking of spe-
cific places. This possibility is exploited to sim-
plify the generation of the GSPN model from
the GCTBN (Portinale and Codetta, 2009).
However, a timed transition characterized by a
marking dependent firing rate, is equivalent to a



set of timed transitions, each characterized by a
certain constant firing rate and enabled by the
corresponding condition about the marking of
places. The two solutions determine the same
underlying CTMC.

3 Generalized CTBN

Following (Nodelman et al., 2002), a CTBN is
defined as follows:
Let X = X1, . . . Xn be a set of discrete vari-

ables, a CTBN over X consists of two compo-
nents. The first one is an initial distribution P 0

X

over X (possibly specified as a standard BN over
X). The second component is a continuous-
time transition model specified as (1) a directed
graph G whose nodes are X1, . . . Xn (and with
Pa(Xi) denoting the parents of Xi in G); (2) a
conditional intensity matrix (CIM) QXi|Pa(Xi)

for every Xi ∈ X.
A GCTBN is defined as follows:

Given a set of discrete variables X =
{X1, . . . Xn} partitioned into the sets D (de-
layed variables) and I (immediate variables)
(i.e. X = D ∪ I and D ∩ I = ∅), a GCTBN
is a pair N = 〈P 0

D, G〉 where
-P 0

D is an initial probability distribution over D;
-G is a directed graph whose nodes are
X1, . . . Xn (and with Pa(Xi) denoting the par-
ents of Xi in G) such that
1. there is no directed cycle in G composed only
by nodes in the set I;
2. for each node Ij ∈ I a conditional probabil-
ity table (CPT) P [Ij |Pa(Ij)] is defined (as in
standard BN);
3. for each node Dk ∈ D a CIM QDk|Pa(Dk) is
defined (as in standard CTBN).

Delayed nodes are, as in case of a CTBN,
nodes representing discrete variables with a con-
tinuous time evolution: the transition from a
value to another one, is ruled by exponential
transition rates defined in the CIM associated
with the node. A delayed node is characterized
also by the initial probability distribution of its
possible values. So, a delayed node implicitly in-
corporates a CTMC (Sec. 2). If a delayed node
is a root node (has no parent nodes) the transi-
tion rates are constant, otherwise the rates are

conditioned by the values of the parent nodes.
Such nodes, in the case of GCTBN, may be ei-
ther delayed or immediate.

Immediate nodes are introduced in order to
capture variables whose evolution is not ruled
by transition rates associated with their val-
ues, but is conditionally and immediately deter-
mined, at a given time point, by the values of
other variables in the model. Immediate nodes
are then treated as usual chance nodes in a BN
and have a standard CPT associated with them.
In case of an immediate root node, its CPT ac-
tually specifies a prior probability distribution.

In a GCTBN, an immediate node Ij directly
depends on its parent nodes (Pa(Ij)). However,
if the set Pa(Ij) contains immediate nodes, then
the change of such nodes is ruled in turns by
the change of their parents, eventually being
delayed variables. So, what really determines
a change in Ij is not Pa(Ij), but instead the
set of the “Closest” Delayed Ancestors of Ij

(CDA(Ij)). Such set contains any delayed vari-
able Dk such that a path from Dk to Ij exists
and contains no intermediate delayed nodes.

The initial distribution P 0
D is specified only

on delayed variables, since this is sufficient to
obtain the joint initial distribution over the set
X of all the variables of the GCTBN as follows:
P 0

X = P 0
D

∏
Ij∈I P [Ij |Pa(Ij)].

A few words are worth to be spent for the
structure of the graph modeling the GCTBN.
While it is in general possible to have cycles in
the graph (as in CTBN) due to the temporal na-
ture of some nodes, such cycles cannot be com-
posed only by immediate nodes. Indeed, if this
would be the case, we would introduce static
circular dependencies among model variables.

The evolution of a system modeled through
a GCTBN occurs as follows: the initial state
is given by the assignment of the initial values
of the variables, according to P 0

X (immediate
root nodes, if any, keep their initial value dur-
ing the model evolution). Given the current sys-
tem state (represented by the joint assignment
of the model variables, both delayed and imme-
diate), a value transition of a delayed variable
Dk will occur, after an exponentially distributed
delay, by producing a new state called a “van-



Figure 1: GCTBN model of the case study.

ishing state”; given the new vanishing state, a
new assignment is determined to any immediate
variable Ij such that Dk belongs to CDA(Ij).
The assignment to Ij is consistent with the CPT
of Ij . The resulting state, called a “tangible
state”, is the new actual state of the system,
from which the evolution can proceed, with a
new transition of value, by a delayed variable.
As we noticed in Sec. 2, the same state classifi-
cation can be recognized in GSPN.

4 A motivating case study

To highlight usefulness and features of a
GCTBN model, we now consider a simple case
study in the field of reliability analysis. It con-
sists of a small system composed by the main
component A and its spare component B. Ini-
tially A is active while B is dormant; in case of
failure of A, B is activated in order to replace
A. However, the activation of B may fail with
probability 0.01. If B fails before A, B can not
replace A. The system is considered as failed if
A is failed and B is dormant or failed. We sup-
pose that only while the system is failed, the
components A and B undergo repair. As soon
as the repair of one of the components is com-
pleted, the component re-starts in working state
and consequently the system becomes operative
again; this implies that the repair of the other
component is suspended.

The time to failure of the components is a
random variable ruled by the negative exponen-
tial distribution: in the case of A, the failure
rate is λA =1.0E-06 h−1. The failure rate of B,
λB, changes according to its current state: if B
is dormant, λB is equal to 5.0E-07 h−1; if in-
stead B is active, λB is equal to 1.0E-06 h−1.
The time to repair a component is still ruled by
the negative exponential distribution: A and B
have the same repair rate µA = µB = 0.01 h−1.

a)
1→ 2 2→ 1

SY S λA SY S µA

1 1.0E-06 h−1 1 0 h−1

2 1.0E-06 h−1 2 0.01 h−1

b)

1→ 2 2→ 1
A SY S λB A SY S µB

1 1 5.0E-07 h−1 1 1 0 h−1

1 2 − 1 2 −
2 1 1.0E-06 h−1 2 1 0 h−1

2 2 5.0E-07 h−1 2 2 0.01 h−1

c)

A B SY S Prob. A B SY S Prob.
1 1 1 1 2 1 1 0.99
1 1 2 0 2 1 2 0.01
1 2 1 1 2 2 1 0
1 2 2 0 2 2 2 1

Table 1: a) CIM of A. b) CIM of B. c) CPT of
SY S.

The GCTBN model. The case study de-
scribed above is represented by the GCTBN
model in Fig. 1 where the variables A, B, SY S
represent the state of the components and of the
whole system respectively. All the variables are
binary because each entity can be in the work-
ing state (1) or in the failed state (2); for the
component B, the working state comprises both
the dormancy and the activation.

The variable A influences the variable B be-
cause the failure rate of the component B de-
pends on the state of A. Both the variables A
and B influence SY S because the state of the
whole system depends on the state of the com-
ponents A and B. The arcs connecting the vari-
able SY S to A and B respectively, concern the
repair of the components A and B only while
the system is failed.

A and B are delayed variables (Sec. 3) and
implicitly incorporate a CTMC composed by
two states: 1 and 2. Since both components
are initially supposed to work, the initial prob-
ability distribution is set equal to 1 for states
A = 1 and B = 1. In the CIM of A (Tab. 1.a),
we can notice that the rate µA is not null only
if the value of SY S is 2. The rate λA instead,
is constant. In the CIM of B (Tab. 1.b), λB is
increased only when A is equal to 2 and SY S
is equal to 1 (this implies that B is active). As
in the case of the variable A, the rate µB is not
null only if the value of SY S is 2. The com-
bination A = 1, SY S = 2 is impossible, so the
corresponding entries are not significant.

The variable SY S is immediate (Sec. 3) and is



characterized by the CPT appearing in Tab. 1.c.
In particular, SY S is surely equal to 1 if A is
equal to 1, and surely equal to 2 if both A and
B are equal to 2. In the case of A equal to
2 and B equal to 1, SY S assumes the value 1
with probability 0.99 (this implies the activa-
tion of the spare component B), or the value 2
with probability 0.01 (this implies that B fails
to activate).

The introduction of the immediate variable
SY S is actually an important modeling fea-
ture, since it allows one to directly capture the
static (or immediate) interactions between A
and B, resulting in a probabilistic choice about
the whole system status. Without the use of an
immediate variable, it is hard to factorize the
model using variables A and B (see (Portinale
and Codetta, 2009) for an example, where an
ordinary CTBN may fail in modeling all possi-
ble state transitions).

5 A Petri Net semantics for GCTBN

Combining in a single model entities explicitly
evolving over time with entities whose determi-
nation is “immediate”, has been already pro-
posed in frameworks other than CTBN. In case
of continuous time, a model having such fea-
tures can be found in the framework of Petri
Nets, namely GSPN (Sec. 2). A GCTBN model
can be expressed in terms of a GSPN, by means
of a set of translation rules (see (Portinale and
Codetta, 2009) for details). This translation is
twofold: (1) it provides a well-defined semantics
for a GCTBN model, in terms of the underly-
ing stochastic process it represents; (2) it pro-
vides an actual mean to perform inference on
the GCTBN model, by exploiting well-studied
analysis techniques for GSPN.

In fact, solution techniques for GSPN have re-
ceived a lot of attention, especially with respect
to the possibility of representing in a compact
way the underlying CTMC and in solving it effi-
ciently (Miner, 2007). Once a GCTBN has been
compiled into a GSPN, such techniques can be
employed to compute inference measures on the
original GCTBN model (Sec. 6).

Case study. According to the conversion
rules described in (Portinale and Codetta,
2009), the GCTBN of the case study in Fig. 1
can be converted into the GSPN model shown
in Fig. 2 where the places A, B and SY S rep-
resent the variables of the GCTBN model. The
value of a GCTBN variable is mapped into the
marking (number of tokens) of the correspond-
ing place in the GSPN. Let us consider the place
B in the GSPN: the marking of the place B can
be equal to 1 or 2, the same values that the
variable B in the GCTBN can assume. B is
a delayed variable and its initialization is mod-
eled in the GSPN by the immediate transitions
B init 1 and B init 2. Their effect is to set the
initial marking of the place B to 1 or 2 respec-
tively. Their weights correspond to the initial
probability distribution of the variable B.

The change of the marking of the place B is
determined by the timed transitions B 1 2 and
B 2 1. The transition B 1 2 is enabled to fire
when the place B contains one token; the firing
sets the marking of B to 2. The transition B 2 1
instead, can fire when the marking of the place
B is equal to 2, and turns it to 1.

The dependency of the transition rate of a
variable on the values of the other variables
in the GCTBN model, becomes in the GSPN
model, the dependency of the firing rate of a
timed transition on the markings of the other
places. For instance, in the GCTBN model, the
variable B depends on A and SY S; in the GSPN
model, λB becomes the firing rate of the timed
transition B 1 2, its value depends on the mark-
ing of the places A and SY S, and assumes the
same values reported in Tab. 1.b. The firing
rate of the timed transition B 2 1 instead, is
µB reported in Tab. 1.b, still depending on the
marking of the places A and SY S.

In the GCTBN, the variable SY S is imme-
diate and depends on A and B. Therefore in
the GSPN, each time the marking of the place
A or B is modified, the marking of SY S has to
be immediately updated: each time the tran-
sition A 1 2, A 2 1, B 1 2 or B 2 1 fires, one
token appears in the place emptySY S; this
determines the firing of the immediate tran-
sition reset SY S 1 or reset SY S 2 removing



Figure 2: GSPN model obtained from the GCTBN in Fig. 1.

any token in SY S. Then, the marking of such
place is set by one of the immediate transitions
set SY S 1, set SY S 2, set SY S 3, set SY S 4,
set SY S 5. Each of them corresponds to one
entry having not null probability in the CPT of
Tab. 1.c.

Infinite rates. Another advantage of the
GSPN semantics for GCTBN is that we can
also model immediate changes on delayed vari-
ables; since delayed variables are characterized
by changing rates (conditioned on their par-
ents’ values), this can be theoretically modeled
by “infinite” rate values, but this is unmanage-
able with standard stochastic analysis. On the
other hand, modeling the changes of delayed
variables through transitions of a GSPN allows
one to use immediate transitions to represent
the above situation. A practical example can
again be found in reliability applications, when
the failure of a system component triggers the
instantaneous failure of a dependent component
(this is usually called a functional dependency
(Dugan et al., 1992)). Fig. 3 is an example of
a functional dependency between a component
F (the trigger) and a component A: the failure
of F immediately induces a failure of A. Fig. 3
shows the GCTBN model and the correspond-
ing GSPN.

Figure 3: a) GCTBN modeling a functional de-
pendency. b) The corresponding GSPN model.

6 Inference algorithms

In the present work, we take advantage of the
correspondence between GCTBN and GSPN, in
order to propose inference algorithms based on
GSPN solution algorithms. For instance, com-
puting the probability of a given GCTBN vari-
able assignment X = xi at time t, will corre-
spond to compute the probability of having i
tokens at time t in the place modeling X in the
GSPN.

Standard inference tasks are prediction and
smoothing. The prediction task consists in com-
puting P (Qt|et1 , . . . , etk) which is the posterior
probability at time t of a set of queried variables
Q ⊆ (D∪I), given a stream of observations (ev-
idence) et1 , . . . , etk from time t1 to time tk with
t1 < . . . tk < t. Every evidence etj consists of a



Procedure Prediction
INPUT: a set of queried variables Q, a query time t, a
set of temporally labeled evidences et1 , . . . etk

with
t1 < . . . tk < t
OUTPUT: P (Qt|et1 , . . . etk

)

- let t0 = 0;
for i = 1 to k {
- solve the GSPN transient at time (ti − ti−1);
- compute from transient, pi(j) = Pr{Xj |eti

} for Xj ∈ D ∪
R;
- update the weights of the immediate init transitions of
Xj according to pi(j); }
- solve the GSPN transient at time (t − tk);
- compute from transient, r = Pr{Q};
- output r;

Figure 4: The prediction inference procedure.

(possibly different) set of instantiated variables.
Prediction can then be implemented by repeat-
edly solving the transient (Sec. 2) of the cor-
responding GSPN at the observation and query
times. Of course, any observation will condition
the evolution of the model, so the suitable con-
ditioning operations must be performed before
a new GSPN resolution.

The smoothing task consists in computing
P (Qt|et1 , . . . , etk) which is the probability at
time t of a set of queried variables Q ⊆ (D ∪
I), given a stream of observations (evidence)
et1 , . . . , etk from time t1 to time tk with t < t1 <
. . . tk. The issue is how to condition on variables
observed at a time instant that follows the cur-
rent one. The idea is then to try to reformulate
the problem in such a way that it can be re-
duced to a prediction-like task. The approach
is then based on the application of the Bayes
rule as follows:
P (Qt|et1 , . . . etk) = αP (Qt)P (et1 , . . . etk |Qt) =
= αP (Qt)P (et1 |Qt) . . . P (etk |et1 , . . . etk−1

, Qt)
In this way, every factor in the above formula is
conditioned on the past and can be implemented
as in prediction. However, this solution requires
the computation of a normalization factor (α).

The pseudo-code for the prediction and
smoothing procedure is shown in Fig. 4 and
Fig. 5 respectively, and explained in details in
(Portinale and Codetta, 2009).

Case study. Consider again the case study of
Fig. 1. We can easily compute the unreliability
of the whole system, by asking for the proba-
bility P(SY S = 2) over time. This reduces to
compute the probability of having 2 tokens into

Procedure Smoothing
INPUT: a set of queried variables Q, a query time t, a
set of temporally labeled evidences et1 , . . . etk
with t < t1 < . . . tk

OUTPUT: P (Qt|et1 , . . . etk
);

{ - Let N be the cardinality of possible assignments qi(1 ≤
i ≤ N) of Q;
- A: array[N];
for i = 1 to N A[i]=Smooth(qi); //possibly in parallel
- output normalize(A); }

Procedure Smooth(q) {
- t0 = t;
- solve the GSPN transient at time t;
- compute from transient, r = Pr{Q = q};
- ev = q;
for i = 1 to k {
- compute from transient, pi−1(j) = Pr{Xj |ev} for Xj ∈ D ∪
R;
- update the weights of the immediate init transitions of
Xj according to pi−1(j);
- solve the GSPN transient at time (ti − ti−1);
- compute from transient, pi(e) = Pr{eti

}
- r = r · pi(e);
- ev = eti

; }
- output r; }

Figure 5: The smoothing inference procedure.

place SY S, on the corresponding GSPN. This
is done, by solving the transient (Sec. 2) at the
required time instants. Results for our exam-
ple are reported in Tab. 2. Since the modeled
system is repairable, it makes sense to ask for
the steady state distribution, in order to un-
derstand whether the system is reliable in the
long run. By solving the GSPN for steady state
(Sec. 2), we can indeed compute that the prob-
abilities of component A and B being faulty in
the long run are 0.496681 and 0.500026 respec-
tively, while the probability of the whole system
being faulty (P (SY S = 2)) is 0.000051, mean-
ing that a good reliability is assured.

Concerning prediction, let us consider to ob-
serve the system working (SY S = 1) at time
t1 = 105h and the system failed (SY S = 2) at
time t2 = 2 · 105h. As described in details in
(Portinale and Codetta, 2009), by applying the
procedure outlined in Fig. 4, we can compute
the probability of component A being working
at time t = 5 · 105h, conditioned by the obser-
vation stream. The result is 0.521855.

Concerning smoothing inference, let us sup-
pose to have observed the system working at
time t1 = 3·105h and failed at time t2 = 5·105h.
We ask for the probability of component A be-
ing failed at time t = 2·102h, conditioned by the
above evidence. By applying the procedure out-



Time (h) Unreliability Time (h) Unreliability
200000 1.4E − 05 400000 2.3E − 05
300000 1.9E − 05 500000 2.7E − 05

Table 2: Unreliability results.

lined in Fig. 5, as described in details in (Porti-
nale and Codetta, 2009), we obtain that the re-
quired probability is equal to 0.308548.

7 Conclusions and future works

The presented formalism of GCTBN allows one
to mix in the same model continuous time
delayed variables with standard “immediate”
chance variables, as well as to model immediate
changes on delayed variables. The usefulness of
this kind of model has been discussed through
some examples from reliability analysis.

The semantics of the proposed GCTBN for-
malism has been provided in terms of GSPN,
a well-known formalism with well established
analysis techniques. In particular, adopting
GSPN solution algorithms as the basis for
GCTBN inference, allows one to take advantage
of specialized methodologies for solving the un-
derlying stochastic process, that are currently
able to deal with extremely large models; in
particular, such techniques (based on symbolic
data structures) allow for one order of magni-
tude of increase in the size of the models to be
solved exactly, with respect to standard meth-
ods, meaning that models with an order of 1010

tangible states can actually be solved (Miner,
2007).

However, the analysis of a GCTBN by means
of the underlying GSPN is only one possibil-
ity that does not take explicit advantage of the
structure of the graph as in CTBN algorithms
(Nodelman et al., 2005; Saria et al., 2007). Our
future works will concentrate on the possibility
of adopting cluster-based or stochastic simula-
tion approximations, even on GCTBN models,
and in comparing their performance and qual-
ity with respect to GSPN-based solution tech-
niques. Finally, since symbolic representations
have been proved very useful for the analysis
of GSPN models, it would also be of signifi-
cant interest to study the relationships between

such representations and the inference proce-
dures on probabilistic graphical models in gen-
eral, since this could in principle open the possi-
bility of new classes of algorithms for BN-based
formalisms.

References

M. Ajmone, G. Balbo, G. Conte, S. Donatelli, and
G. Franceschinis. 1995. Modelling with General-
ized Stochastic Petri Nets. J. Wiley.

G. Chiola, G. Franceschinis, R. Gaeta, and M. Rib-
audo. 1995. GreatSPN 1.7: Graphical Editor and
Analyzer for Timed and Stochastic Petri Nets.
Performance Evaluation, 24(1&2):47–68.

J.B. Dugan, S.J. Bavuso, and M.A. Boyd. 1992.
Dynamic fault-tree models for fault-tolerant com-
puter systems. IEEE Transactions on Reliability,
41:363–377.

T. El-Hay, N. Friedman, and R. Kupferman. 2008.
Gibbs sampling in factorized continuous time
Markov processes. In Proc. 24rd UAI’08.

Y. Fan and C. Shelton. 2008. Sampling for ap-
proximate inference in continuous time Bayesian
networks. In Proc. 10th Int. Symp. on AI and
Mathematics.

S.L. Lauritzen and T.S. Richardson. 2002. Chain
graph models and their causal interpretations.
Journal Of The Royal Statistical Society Series
B, 64(3):321–348.

A.S. Miner. 2007. Decision diagrams for the exact
solution of Markov models. Proceedings in Ap-
plied Mathematics and Mechanics (PAMM), 7(1).

U. Nodelman, C.R. Shelton, and D. Koller. 2002.
Continuous Time Bayesian Networks. In Proc.
18th UAI’02, pages 378–387.

U. Nodelman, C.R. Shelton, and D. Koller. 2005.
Expectation propagation for continuous time
Bayesian networks. In Proc. 21st UAI’05, pages
431–440.

L. Portinale and D. Codetta. 2009. A GSPN seman-
tics for continuous time Bayesian networks with
immediate nodes. Technical Report TR-INF-
2009-03-03-UNIPMN, Dip. di Informatica, Univ.
del Piemonte Orientale. http://www.di.unipmn.it.

S. Saria, U. Nodelman, and D. Koller. 2007. Rea-
soning at the right time granularity. In Proc. 23rd
UAI’07, pages 421–430.


