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Abstract

This paper introduces an influence diagram (ID) model that permits continuous decision
variables with multiple continuous parents. The marginalization operation for a continu-
ous decision variable first develops a piecewise linear decision rule as a continuous function
of the next continuous parent in the deletion sequence. Least squares regression is used
to convert this rule to a piecewise linear function of all the decision variable’s continuous
parents. This procedure is incorporated into an iterative solution algorithm that allows
more refined decision rules to be constructed once the non-optimal regions of the state
spaces of decision variables are identified. Additional examples serve to compare relative
advantages of this technique to other ID models proposed in the literature.

1 Introduction

The influence diagram (ID) is a graphical and
numerical representation for a decision prob-
lem under uncertainty (Howard and Matheson,
1984). The ID model is composed of a di-
rected acyclic graph that shows the relation-
ships among chance and decision variables in
the problem, as well as a set of conditional prob-
ability distributions for chance variables and a
joint utility function. An example of a decision
problem under uncertainty is given in the fol-
lowing section.

1.1 Example

A firm facing uncertain demand must choose
production capacity and set product prices
(Göx, 2002). Product demand is determined
as Q(p, z) = 12 − p + z, where P is the prod-
uct price and Z is a random demand “shock.”
Assume Z ∼ N (0, 1) and that the firm’s utility
(profit) function is

u0(k, p, z)

=

{
(p− 1) · (12− p+ z) − k if Q(p, z) ≤ k
(p− 1) · k − k if Q(p, z) > k .

(1)
Notice that the firm’s sales are limited to the
minimum of product demand and production
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Figure 1: Influence Diagram Model.

capacity (K). Figure 1 shows an ID model for
the example. The chance and decision variables
in the ID are depicted as ovals and rectangles,
respecitively. The joint utility function appears
as a diamond. Since there is an arrow pointing
from Z to K and P , Z is a parent of K and P .
The set of all parents of P is Pa(P ) = {K,Z}.
An arrow pointing to a chance node indicates
the distribution for this node is conditioned on
the variable at the head of the arrow. An arrow
pointing to a decision node means that the value
of the variable will be known when the decision
is made.

1.2 Background

Although most ID models proposed in the
literature assume that all decision variables
take values in discrete (countable) state spaces,
there are some exceptions. Shachter and Ken-
ley (1989) introduce Gaussian IDs, where all
continuous chance variables are normally dis-



tributed, all decision variables are continuous,
and utility functions are quadratic.

The mixture-of-Gaussians ID (Poland and
Shachter, 1993) requires continuous chance vari-
ables to be modeled as mixtures of normal
distributions and allows continuous decision
variables. Madsen and Jensen (2005) outline
an improved solution procedure for IDs con-
strained under the same conditions as mixture-
of-Gaussians IDs that is able to take advantage
of an additive factorization of the joint utility
function.

Cobb (2007) introduces an ID model which
allows continuous decision variables with one
continuous parent and continuous chance vari-
ables having any probability density function
(pdf). Using this approach, pdfs and utility
functions are approximated by mixtures of trun-
cated exponentials (MTE) potentials (Moral et
al., 2001), which allows the marginalization
operation for continuous chance variables to
be performed in closed form. This technique
develops a piecewise linear decision rule for
continuous decision variables and subsequently
marginalizes them from the model as determin-
istic chance variables.

This paper builds upon the model in (Cobb,
2007) by allowing continuous decision variables
to have multiple continuous parents. The
marginalization operation for continuous deci-
sion variables and the iterative solution algo-
rithm are introduced using examples. A longer
working paper (Cobb, 2010) contains more for-
mal definitions.

The remainder of this paper is organized as
follows. In §2, notation and definitions are in-
troduced. In §3, a procedure for marginalizing a
continuous decision variable is presented using
the example in §1.1. In §4, the results from the
example problem are compared to an analytical
solution. §5 describes solutions to additional
examples before §6 concludes the paper.

2 Notation and Definitions

2.1 Notation

In this paper, we assume all decision and chance
variables take values in finite-bounded, continu-

ous (non-countable) state spaces. All variables
are denoted by capital letters in plain text, e.g.,
A, B, C. Sets of variables are denoted by capital
letters in boldface, with Z representing chance
variables, D representing decision variables, and
X indicating a set of variables whose compo-
nents are a combination of chance and deci-
sion variables. If A and X are one- and multi-
dimensional variables, respectively, then a and
x represent specific values of those variables.
The finite-bounded, continuous state space of
X is denoted by ΩX.
Example 1. In the ID shown in Figure 1, the
state spaces of the variables are ΩK = {k : 0 ≤
k ≤ 14}, ΩP = {p : 1 ≤ p ≤ 9}, and ΩZ = {z :
−3 ≤ z ≤ 3}. This assumes the distribution for
Z is normalized over the interval [−3, 3] to solve
the ID.

MTE probability potentials are denoted by
lower-case Greek letters, e.g., φ, ψ, ϕ, whereas
MTE utility potentials are denoted by ui, where
the subscript i is normally zero for the joint
utility function in the problem, and one for the
initial MTE approximation to the joint utility
function. The subscript can be increased to in-
dex additional MTE utility potentials in the ini-
tial representation or solution.

2.2 Mixtures of Truncated
Exponentials (MTE) Potentials
(Moral et al., 2001)

Let X be a mixed variable and let Z =
(Z1, . . . , Zc) and D = (D1, . . . , Df) be the
chance and decision variable parts of X, respec-
tively. Given a partition Ω1, . . . ,Ωn that divides
ΩX into hypercubes, an n-piece MTE potential
φ : ΩX �→ R+ has components

φh(z,d) =

a0 +
m∑

i=1

ai exp

⎧⎨
⎩

c∑
j=1

b
(j)
i zj +

f∑
�=1

b
(c+�)
i d�

⎫⎬
⎭

for h = 1, . . . , n, where ai, i = 0, . . . , m and b(j)i ,
i = 1, . . . , m, j = 1, . . . , (c+f) are real numbers.

We assume all MTE potentials are equal to
zero in unspecified regions. In this paper, all
probability distributions and utility functions
are approximated by MTE potentials.
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Figure 2: N (0, 1) pdf and MTE Potential φ1.

Example 2. The function f1(p) = p over the
interval [1, 9] can be approximated by the MTE
potential

uP (p) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−53.028072 + 54.05148 exp{0.017847(p− 1)}
if 1 ≤ p < 5

−49.028072 + 54.05148 exp{0.017847(p− 5)}
if 5 ≤ p ≤ 9 ,

using the method described in (Cobb and
Shenoy, 2008). Similar MTE potentials, uK(k)
and uZ(z), are used to approximate the func-
tions f2(k) = k on [0, 14] and f3(z) = z on
[−3, 3]. These approximations are are substi-
tuted into (1) to form the MTE utility function
u1 for the example problem.

The resulting function will contain values of
variables in the limits of the domain. In other
words, to create a true MTE potential where
the limits are hypercubes, values for two of the
variables must be substituted. MTE potentials
defined in this way require replacement of linear
terms when integration is used to marginalize
variables in the ID solution. This is discussed
in (Cobb and Shenoy, 2006).

Example 3. The MTE approximation φ1 to
the N (0, 1) pdf (see Cobb et al., (2006) for nu-
merical details) that approximates the distribu-
tion for the variable Z in the example from §1.1
is shown in Figure 2, overlaid on the actual
N (0, 1) distribution. The MTE function is nor-
malized on the interval [−3, 3].

2.3 Fusion Algorithm

IDs are solved in this paper by applying the fu-
sion algorithm of Shenoy (1993), which is rele-

vant for the case where the joint utility function
factors multiplicatively. This algorithm involves
deleting the variables in an elimination sequence
that respects the information constraints in the
problem. The sequence is chosen so that deci-
sion variables are eliminated before chance or
decision variables that are immediate predeces-
sors.

When a variable is to be deleted from the
model, all probability and/or utility potentials
containing this variable in their domains are
combined via pointwise multiplication, then the
variable is marginalized from the result. The
appropriate marginalization operation depends
on whether the variable being marginalized is a
chance variable (in which case marginalization
is accomplished by integrating over the domain
of the chance variable being removed) or a deci-
sion variable. Formal definitions of combination
and marginalization of chance variables can be
found in (Cobb, 2010).

3 Marginalizing Decision Variables

Assume we want to eliminate a decision variable
D with parents X = {X1, X2 . . . , Xn} from the
ID. The variables in X may be either chance or
decision variables, and the subscripts on vari-
ables in X serve to number the variables as they
appear in the deletion sequence for the problem.
The set of parents excluding X1 is denoted by
X′ = X \X1. Eliminating the decision variable
is a four-step process:

(1) Combine all potentials containing D in
their domain, create discrete approxima-
tions to ΩD and ΩX′ , and find the discrete
value of D that maximizes utility for each
region of a hypercube of ΩX1 for each (dis-
crete) x′ ∈ ΩX′ .

(2) For each (discrete) x′ ∈ ΩX′ , create a de-
cision rule for D as a piecewise linear func-
tion of X1.

(3) Use least squares regression to create a
piecewise linear decision rule for D as a
function of X.



(4) Convert D to a deterministic chance vari-
able, and marginalize D using the proce-
dure in §3.4.

This process has similarities to the procedure
for marginalizing a continuous decision variable
proposed by Cobb (2007); however, employ-
ing regression in Step 3 enables this new op-
eration to permit continuous decision variables
with multiple continuous parents. The steps are
introduced by illustrating the removal of P from
the ID of §1.1 using the deletion sequence P , K,
Z.

In this solution, we utilize v = 8 discrete val-
ues and regions at each step in the process when
we are required to discretize or sub-divide the
state space of a continuous variable.

3.1 Step 1–Discrete Approximation

The purpose of this step in the marginalization
process is to find a relationship—given a value
of Z—between the optimal price (P ) and pro-
duction capacity (K) by examining the utility
function for various values of P .

In this step, discrete values pu, u = 1, . . . , 8,
for P are assigned as {1.5, 2.5, . . . , 8.5}. As-
sign discrete values zt, t = 1, . . . , 8, to the
chance variable Z, the most distant parent
of P in the deletion sequence. Based on
the state space ΩZ , these discrete values are
{−2.625,−1.875,−1.125, . . . , 2.625}. For each
discrete value zt, create an MTE utility func-
tion u1(k, p, zt) by substituting Z = zt in u1.

For each value zt, determine the (discrete)
value in ΩP that maximizes the utility function
u1(k, p, zt) for each region of a hypercube of ΩK .
For example, when Z = z3 = −1.125, the utility
functions u1(k, pu, z3) appear as shown in Fig-
ure 3. From the diagram, it is apparent that
u1(k, 8.5, z3) ≈ u1(k, 7.5, z3) when K = 2.75,
u1(k, 7.5, z3) ≈ u1(k, 6.5, z3) when K = 4.05,
and u1(k, 6.5, z3) ≈ u1(k, 5.5, z3) when K =
5.35.

The results of this step of the operation are
the sets of points, Φ1,t, and decision variable
values, Ψ1,t, for t = 1, . . . , 8. For instance,
Φ1,3 = {0, 2.75, 4.05, 5.35, 14} and Ψ1,3 =
{8.5, 7.5, 6.5, 5.5}, where the three in the sub-
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Figure 3: The Utility Functions u1(k, pu, z3).

scripts is an index on the related value z3 =
−1.125. The set Φ1,3 can be used to deter-
mine intervals where the optimal discrete value
of price is invariant, and the set Ψ1,3 contains
the optimal values for P corresponding to these
intervals.

This procedure is derived from the operation
for marginalizing a discrete decision variable in
a hybrid ID (Cobb and Shenoy, 2008).

3.2 Step 2–Piecewise Linear Decision
Rule

The purpose of this step is to express the rela-
tionship between optimal price (P ) and produc-
tion capacity (K) by estimating a continuous
function P = f(K), given a value for Z.

Continuing from §3.1, when −1.5 ≤ z ≤
−0.75, Φ1,3 is used to determine k =

(
0+2.75

2 ,
2.75+4.05

2 , 4.05+5.35
2 , 5.35+14

2

)
= (1.375, 3.4, 4.7,

9.675), with a corresponding set of points, p
= (8.5, 7.5, 6.5, 5.5) defined as in Ψ1,3. The
equation for the line connecting the coordinates
{(k = 1.375, p= 8.5), (k = 3.4, p = 7.5)} is p(k)
= 9.17901 − 0.49383k. Similar equations are
determined using other sets of adjacent coordi-
nates and these form a piecewise linear decision
rule for P as

Ψ̂1,3(k)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

9 0 ≤ k < 0.3625
9.17901− 0.49383k 0.3625 ≤ k < 3.4
10.11540− 0.76923k 3.4 ≤ k < 4.7
7.44472− 0.20101k 4.7 ≤ k ≤ 14 .

The equation for the first (last) line segment is
extrapolated until the result of the function is
greater (less) than the endpoint of ΩP , in which



case the function is defined as the maximum
(minimum) value in ΩP . A similar decision rule
is developed for the regions with midpoints zt,
t = 1, . . . , 8. A function Ψ̂1 is comprised of the
resulting piecewise functions as

Ψ̂1(k, z) =

⎧⎪⎪⎨
⎪⎪⎩

Ψ̂1,1(k) −3 ≤ z < −2.25
...

...
Ψ̂1,8(k) 2.25 ≤ z ≤ 3 .

3.3 Step 3–Least Squares Regression

This step further refines the decision rule to be
a compact piecewise linear function for optimal
price given values of K and Z.

Continuing from §3.2, the state space of K—
the next parent of P in the deletion sequence—
is divided into 8 regions, [0, 1.75], . . ., [12.25, 14],
with the m-th region denoted by [kd

m−1, k
d
m]

where kd
m = kmin + m · (kmax − kmin)/v for

m = 0, . . . , v. Define ε = 0.1, nK = �(kmax −
kmin)/ε	 + 1, and nZ = �(zmax − zmin)/ε	 + 1.
The function Ψ̂1 is used to output a series of
ordered data points {Ψ̂1(ki, zj), ki, zj} for each
ki = kmin + (i − 1) · ε, i = 1, . . . , nK and
zj = zmin + (j − 1) · ε, j = 1, . . . , nZ . These
ordered data points are sorted into ascending
order according to the values ki and grouped
into v = 8 tables, where the m-th table contains
points such that all ki ∈ [kd

m−1, k
d
m] for each

m = 1, . . . , v. In other words, for each value ki

that appears in the m-th table, each pair (ki,
zj) appears exactly once, along with the corre-
sponding values Ψ̂1(ki, zj). Each table is used
to create the matrices required to estimate a lin-
ear equation p̂(k, z) = b2m + b3m · k+ b4m · z via
least squares regression.

For example, with ε = 0.1, nK = 141, and
nZ = 61, so 61 values for Z are matched with
each of the 18 values ofK in the second interval,
[1.75, 3.5], defined using ΩK . Thus, 18 × 61 =
1098 data points are used to define the (1098×
1) matrix Υ2 and the (1098 × 3) matrix Λ2 as
follows:
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Figure 4: The Decision Rule Θ1(4.375, z) for P .

Υ2 = Λ2 =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ̂1 (k19, z1)
...

Ψ̂1 (k19, z61)
...

Ψ̂1 (k36, z1)
...

Ψ̂1 (k36, z61)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 k19 z1
...

...
...

1 k19 z61
...

...
...

1 k36 z1
...

...
...

1 k36 z61

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The least squares regression estimators are
determined as b2 = [ b22 b32 b42 ]� =(
Λ�

2 Λ2

)−1
Λ�

2 Υ2. Following this process in each
region of the state space of K creates the follow-
ing piecewise linear decision rule:

Θ
′
1(k, z) =⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

9.0194− 0.3631k+ 0.0986z 0 ≤ k < 1.75
9.0265− 0.3808k+ 0.3246z 1.75 ≤ k < 3.5
...

...
8.1670− 0.1731k+ 0.5340z 12.25 ≤ k ≤ 14 .

A revised piecewise linear decision rule is then
determined as

Θ1(k, z) =

⎧⎪⎨
⎪⎩
pmin Θ

′
1(k, z) < pmin

Θ
′
1(k, z) pmin ≤ Θ

′
1(k, z) ≤ pmax

pmax Θ
′
1(k, z) > pmax .

Using this revised formulation of the decision
rule ensures that the assigned values are con-
tained in ΩP . A graphical view of the deci-
sion rule for P as a function of Z given that
K = 4.375 is shown in Figure 4. The decision
rule Θ1 is a refinement of the decision rule Ψ̂1.



3.4 Step 4–Removing the Decision
Variable

Continuing from §3.3, since a value for P will
be completely determined by observed values of
K and Z, P can be replaced in the joint utility
function as u2(k, z) = u1 (Θ1(k, z), k, z). The
substitution of Θ1 for P in u1 is accomplished
on a piecewise basis. For instance, when 5.25 ≤
k ≤ 7, Θ1 is defined as f1(k, z) = 8.16701 −
0.17307k+ 0.47450z for all z ∈ ΩZ . When k ≥
12 − p + z, 0 ≤ z ≤ 3, and 1 ≤ p ≤ 5, u1 is
defined as

f2(p, k, z) = −1067.4336− 94.5901 exp{0.0102k}
+ · · ·+ 2311.6851 exp{0.0179p+ 0.02380z}+ · · ·
The calculation of u2(k, z) =

u1 (Θ1(k, z), k, z) includes the result of the
substitution f2(f1(k, z), k, z), with the ensuant
expression included in u2 where the domains of
the two functions overlap, or

f2(f1(k, z), k, z) =
−1067.4336− 94.5901 exp{0.0102k}+ · · ·
+2311.6851 exp{0.0179 · f1(k, z) + 0.02380z}+ · · ·

for 5.25 ≤ k ≤ 7 and 0.8269k − 0.5255z ≥
3.8330. A similar substitution of each piece of
Θ1 is made into each piece of u1 to create the
MTE utility function u2.

3.5 Results

To complete the example problem, the decision
variable K is marginalized using the process in
§3.1 through 3.4, except that since K has only
one parent (Z), Step 3 (least squares regression)
is not performed. The decision rule for K as a
function of Z is determined as Θ2(z) = 5.2646+
0.5833z for all z ∈ ΩZ . To marginalize K, a
new utility function u3 is determined as u3(z) =
u2 (Θ2(z), z). The firm’s expected utility is then
calculated as

∫
ΩZ

φ1(z) · u3(z) dz = 24.6394.
The ID method presented in this paper is sen-

sitive to the state spaces assigned to the decision
variables. In other words, if the continuous in-
terval of possible optimal values for the decision
variables can be narrowed, the accuracy of the
decision rules can be improved.

In this example, the ID decision rule Θ2(z)
only selects values for K in the interval

[3.5146, 7.0146]. Similarly, the decision rule
Θ1(k, z) only allows for values of P in the in-
terval [4.142, 9]. In a second iteration of the ID
solution procedure, we can replace the original
state spaces of the decision variables P and K

with these intervals and obtain a better approx-
imation to the true optimal decision rules and
profit function.

To complete the second iteration for the ex-
ample, the same marginalization procedure is
used to develop decision rules for P as a func-
tion of {K,Z} and K as a function of Z.

Cobb (2009) explains additional details of the
iterative algorithm.

4 Comparison

In the example problem, the firm knows the
true value, Z = z, at the time it chooses ca-
pacity. Göx (2002) uses this fact to find an
analytical solution for the optimal capacity of
k∗(z) = 10+z

2 . This result hinges on several re-
strictive assumptions, including the linearity of
the demand function and the symmetric form
of the distribution for Z. By choosing an exam-
ple with an analytical solution, we can compare
the results from the ID solution as a means of
determining its accuracy. The ID method can
then be extended to cases where an analytical
solution is not available (see §5).

The decision rule Θ2 for K determined using
two iterations of the ID solution procedure is
shown in Figure 5 with the analytical capacity
decision rule. This decision rule has seven linear
pieces. The mean squared error (MSE) (Win-
kler and Hays, 1970) can be used as a measure
of the difference between the analytical and es-
timated decision rules. The MSE is calculated
as∫

ΩZ

φ1(z) · (Θ2(z) − k∗(z))2 dz = 0.01469 .

The MSE after the first iteration is 0.07682, so
revising the state space and performing the sec-
ond iteration improves the accuracy of the de-
cision rule. The decision rule Θ1 for P is used
in the determination of Θ2, so this MSE mea-
surement is a measure of the accuracy of the
decision rules developed the ID solution. The
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expected profit is 25.0792, as compared to the
first iteration and analytical values of 24.6394
and 25.25, respectively.

5 Additional Examples

This section briefly describes two additional ex-
amples derived from the problem in §1.1 (for
additional details, see (Cobb, 2010)).

5.1 Non-Gaussian Chance Variable

One advantage of using the ID model described
in this paper is that it can accommodate non-
Gaussian chance variables directly without us-
ing a mixture-of-Gaussians representation.

Suppose that the firm has established produc-
tion capacity at a minimum of 3.5 units and a
maximum of 6.5 units. The random variable K
represents the percentage of additional capac-
ity (above minimum) available (which fluctuates
with changes in labor and machine utilization)
and is modeled with a Beta(3, 3) distribution.
The distribution for K is approximated by the
MTE potential φ2 determined using the method
discussed by Cobb et al. (2006). The MTE ap-
proximationφ1 to the distribution for Z remains
the same.

Although P now has two parents (K and Z)
that are chance variables (one of which is non-
Gaussian), the procedure for marginalizing P

from the ID proceeds in exactly the same way
as in the previous example.

5.2 Nonmonotonic Decision Rule

Suppose P and K are decision variables as in
§1.1, but that the unit variable cost of $1 is
replaced in the joint utility function by z2, i.e.
unit variable costs are now higher for values of
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Figure 7: The Decision Rule Θ2 for K.

the demand shock Z farther from zero. This
utility function is approximated with an MTE
utility function as in Example 2.

Figure 6 shows the utility function (for eight
discrete values of K) after marginalizaton of
P and illustrates that the optimal value for K
must be determined as a nonmonotonic function
of Z. For instance, when −2.25 ≤ z ≤ −1.15
or 2.65 ≤ z ≤ 2.75, a capacity of K = 2.625
is optimal, whereas if −1.15 ≤ z ≤ 0.45 or
2.55 ≤ z ≤ 2.65, the best value of K is 4.375.
Ultimately, these points are used to create the
decision rule Θ2 for K as a function of Z (see
Figure 7).

6 Conclusions

This paper has introduced improvements to the
model of Cobb (2007) that allow continuous de-
cision variables in IDs to have multiple contin-
uous parents. The framework proposed in this
paper has some potential advantages over other
ID models. To use the model in (Cobb, 2007) to
solve the example in §1.1, we would have to im-
pose one of the following restrictions: (1) model



K as a discrete decision variable or Z as a dis-
crete chance variable, as the continuous decision
variable P would be allowed to have only one
continuous parent; or (2) discretize any pair of
chance and/or decision variables. A comparison
of the model in this paper to related models is
provided in (Cobb, 2010).

The method in this paper permits non-
Gaussian pdfs to be modeled without using
mixtures of Gaussian distributions. This is
in constrast to Gaussian IDs (Shachter and
Kenley 1989) and mixtures-of-Gaussians IDs
(Poland and Shachter, 1993; Madsen and
Jensen, 2005). Additionally, those models de-
termine only linear—as opposed to piecewise
linear—decision rules, and thus cannot accomo-
date a case where the optimal decision rule is a
nonmonotonic function of a decision rule’s con-
tinuous parent(s), as in the example of §5.2.

Additional research is needed to demonstrate
potential applications of the ID model and ex-
plain the compromise between computational
cost and decision rule accuracy when parame-
ters in the solution technique are altered. The
model presented here is that the methodology
has been designed to extend the ID model from
(Cobb, 2007). There are other methods that
could be employed to determine decision rules
for continuous variables with multiple contin-
uous parents, such as a straightforward grid
search or a sampling technique. Future research
will be aimed at exploring these methods and
comparing them with those in this paper.
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