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Abstract

A hybrid influence diagram is a compact graphical and numerical representation of a
decision problem under uncertainty that includes both discrete and continuous chance
variables. These models can be used by businesses to detect online credit card transactions
that may be fraudulent. By creating decision rules based on merchandise value and
additional address and product characteristics, the influence diagram model can be used
to develop policies that help businesses decide when to investigate an order’s legitimacy.
The influence diagram establishes guidelines that minimize the sum of the costs of lost
merchandise and order investigation.

1 Introduction

A major credit card issuer—Visa—encourages
businesses to prevent “card-not-present fraud”
by developing “...in-house fraud detection pro-
grams, such as guidelines for staff on how to
spot and report suspected fraudulent transac-
tions” (“Credit card fraud,” 2008) and lists
the following common characteristics of falsified
credit card orders: 1) first-time orders, 2) larger
than normal orders, 3) orders consisting of sev-
eral of the same item, 4) orders shipped rush
or overnight, and 5) orders shipped to a foreign
address.

Fraud detection methods have been imple-
mented using a number of quantitative tech-
niques in the fields of data mining, statistics,
and artificial intelligence. Cobb (2010) provides
a survey of several of these methods. A large
portion of the previous research that adapts
quantitative techniques to credit card fraud de-
tection has focused on these problems from
the perspective of banks and firms that issue
credit cards. However, businesses that accept
credit cards for purchases—particularly in on-
line transactions—can also benefit from the ap-
plication of such models.

Some credit card fraud can be prevented prior
to the customer completing a purchase. For
instance, when a credit card approval for the

purchase amount is requested, an order being
submitted on a card that has been reported
as stolen is denied. To further prevent fraud,
a business can collect additional information,
such as the three-digit card verification value
on the back of the card. This prevents some-
one who has obtained a stolen credit card num-
ber, but not the actual card, from completing a
fraudulent transaction. However, if a card has
not been discovered as stolen, the fraud will not
be detected at this point.

This paper proposes an influence diagram
(ID) framework that can be employed to de-
velop processes by which businesses can select
transactions for further investigation as poten-
tially falsified. The goal of the model is to ap-
propriately balance the cost of shipping mer-
chandise that will ultimately not be paid for
because of a fraud-related chargeback, versus
the cost of utilizing employee time and sys-
tem resources to confirm and investigate poten-
tially fraudulent orders. An ID is a probabilistic
model that is a simultaneous graphical and nu-
merical representation of a decision problem un-
der uncertainty (Howard and Matheson, 1984).
Recent innovations in IDs permit models with
non-Gaussian continuous chance variables and
discrete decision variables (Cobb and Shenoy,
2008). In this paper, a model that allows a
business to develop an optimal decision rule for



whether or not to investigate a transaction for
fraud based on the observation of both discrete
and continuous variables is suggested.

The remainder of this paper is organized as
follows. Section 2 provides notation and defini-
tions. Section 3 describes the ID model. Sec-
tion 4 illustrates the solution of the ID model
for an example fraud detection problem. Sec-
tion 5 summarizes the paper. This paper is de-
rived from a longer working paper on this topic
(Cobb, 2010).

2 Notation and Definitions

This section introduces notation and definitions
used throughout the paper.

2.1 Notation

Variables are denoted by capital letters in plain
text, e.g., A, B, C. Sets of variables are denoted
by capital letters in boldface, e.g., X, Y, Z. If A

and X are one- and multi-dimensional variables,
respectively, then a and x represent specific val-
ues of those variables. The state space of X is
denoted by ΩX.

A probability potential, φ, for X is a function
φ : ΩX → [0, 1]. If A is discrete, the more intu-
itive notation P (A) may be used to represent a
discrete probability distribution. A utility po-
tential, u, for a set of variables X is a function
u : ΩX → R.

2.2 Mixtures of Truncated
Exponentials

One difficulty associated with including contin-
uous chance variables in IDs is that mathemat-
ical operations, such as integration, on proba-
bility density functions are difficult to perform
in closed form. For the case where all chance
variables are normally distributed and discrete
variables do not have continuous parents, the
technique of Madsen and Jensen (2005) can be
applied to solve the ID.

For problems with continuous variables that
are not normally distributed, the state spaces
must be discretized to permit an ID solution or
a mixture-of-Gaussians ID model (Poland and
Shachter, 1993) can be used. Another approach
is to approximate probability density functions

in the ID with mixtures of truncated exponen-
tials (MTE) potentials, which are defined as fol-
lows.

Definition 1. (MTE Potential (Moral et
al., 2001)). Let S be a continuous chance vari-
able. Given a partition Ω1, . . . , Ωn that divides
ΩS into hypercubes, an n-piece MTE potential
φ : ΩS �→ R+ has components

φh(s) = a0 +
m∑

i=1

ai exp {bi · s}

for h = 1, . . . , n, where ai, i = 0, . . . , m and bi,
i = 1, . . . , m are real numbers.

MTE potentials can be used to approximate
both probability distributions and utility func-
tions. The optimization procedure outlined by
Cobb et al. (2006) is used to determine the
parameters (the values ai and bi) required to
approximate probability density functions with
MTE potentials.

2.3 Operations on MTE Potentials

In this paper, the operations of combination
and marginalization are used to solve IDs where
MTE potentials are used to represent probabil-
ity density functions.

Definition 2. (Combination.) Combination
of MTE potentials is pointwise multiplication.
Let φ1 and φ2 be MTE potentials for X1 and
X2. The combination of φ1 and φ2 is a new
MTE potential for X = X1 ∪X2 defined as fol-
lows

φ(x) = (φ1 ⊗ φ2) (x) = φ1(x↓ΩX1 ) · φ2(x↓ΩX2)

for all x ∈ ΩX.
Combination of two MTE probability den-

sities results in an MTE probability density.
Combination of an MTE probability density
and an MTE utility potential results in an MTE
utility potential, as does the combination of two
MTE utility potentials. Note that since a dis-
crete probability distribution is a special case
of an MTE potential where a1, . . . , am in each
component are equal to zero, this definition of
combination applies to discrete probability dis-
tributions.



Definition 3. (Marginalization of Chance
Variables.) Marginalization of a chance vari-
able is summation over its state space. Let φ be
an MTE potential for X = X′ ∪ X . The state
space of X is ΩX = {x1, . . . , xn}. The marginal
of φ for a set of variables X′ is an MTE potential
computed as

φ↓X′
(x′) = φ−X(x′) =

n∑
i=1

φ(X = xi, x′) (1)

for all x′ ∈ ΩX′ . If the variable X is a continu-
ous chance variable, the summation in Eq. (1) is
replaced with integration as follows (assuming
the state space of X is ΩX = {x : xmin ≤ x ≤
xmax}):

φ↓X′
(x′) = φ−X(x′) =

∫
ΩX

φ(x) dx

for all x′ ∈ ΩX′ where x = (x, x′).

Definition 4. (Marginalization of Decision
Variables.) In this paper, all decision variables
are discrete and binary. Assume I is a discrete
decision variable with possible values I = 0 and
I = 1 that has a continuous parent S with ΩS

= {s : smin ≤ s ≤ smax}. Without loss of
generality, arbitrarily assign I = 0 to the binary
state of I that maximizes the value of u at smin.
To remove I from the ID, a threshold, Ψ, is
determined as follows:

INPUT: u, smin, smax, ε
OUTPUT: Ψ
INITIALIZATION: Ψ = smin

DO WHILE (u(I = 0, Ψ + ε) ≥
u(I = 1, Ψ + ε)) ∩ (Ψ ≤ smax)
Ψ = Ψ + ε

END DO
Ψ = Ψ + ε/2

The parameter ε is an increment in S that can
be assigned an appropriate value based on the
application being addressed. The decision vari-
able I is removed from the model by construct-
ing the following MTE potential using the util-
ity function u and the threshold value Ψ:

u↓S(s) =

{
u(I = 0, s) if smin ≤ s < Ψ
u(I = 1, s) if Ψ ≤ s ≤ smax .

This definition applies when u(I = 0, s) =
u(I = 1, s) at one point and is a simpler version
of the line search technique defined by Cobb and
Shenoy (2008).

2.4 Fusion Algorithm

The ID is solved by applying the fusion algo-
rithm (Shenoy, 1993). This algorithm involves
deleting the variables in an elimination sequence
that respects the information constraints in the
problem. The sequence is chosen so that deci-
sion variables are eliminated before chance or
decision variables that are immediate predeces-
sors. When a variable is to be deleted from the
model, all probability and/or utility potentials
containing this variable in their domains are
combined (according to Definition 2), then the
variable is marginalized from the result. The
appropriate marginalization operation depends
on whether the variable being marginalized is a
chance variable (see Definition 3) or a decision
variable (see Definition 4).

3 ID Model

This section describes the ID model.

3.1 Graphical Representation

The ID model for the credit card detection prob-
lem is shown in Figure 1. The single-border
ovals represent discrete chance variables. Fraud
(F ) indicates whether or not an order is fraudu-
lent. The variables A0 and P0 reveal the number
of suspicious characteristics in the address and
product information on an order, respectively.
The double-border oval for order Size (S) de-
fines a continuous chance variable for the value
(or cost) of the merchandise contained on an
order. The arrows (or arcs) pointing from F

to A0, F to P0, and F to S specify that the
probability distributions for those variables are
conditioned on F .

The rectangle in Figure 1 represents the firm’s
decision on whether or not to investigate an or-
der. The arcs pointing from the variables A0 to
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Figure 1: ID Model.

I , P0 to I , and S to I show that the firm will ob-
serve the values of these chance variables prior
to making its decision on whether or not to in-
vestigate the order. The value I = 0 means that
the firms does not investigate, while the value
I = 1 means the firm investigates.

The diamond in the ID represents the joint
utility function. The arcs pointing from F , S,
and I to this node indicate that these variables
are in the domain of the joint utility function. In
this context, the firm’s utility will be the cost to
the firm of either investigating potential fraud
or shipping unpaid merchandise.

3.2 Numerical Representation

This section describes the potentials in the ID.

3.2.1 Fraud (F)

The variable F has state space ΩF = {0, 1},
where F = 0 stands for legitimate and F =
1 signifies fraudulent. Thus, the probability of
fraud is denoted by P (F = 1) = η.

3.2.2 Address Characteristics (A0)

The variable A0 has state space ΩA0 = {0, . . .,
m}. The distribution P (A0|F ) is constructed
by using m variables representing the presence
of specific address characteristics for credit card
orders. For illustrative purposes, the remainder
of the description of the potentials in the model
will assume m = 3. Extension to the more gen-
eral case is straightforward.

The variable A0 “aggregates” the factors rep-
resented by the variables {A1, A2, A3}; thus, the
value of A0 is determined by the number of
variables in the set {A1, A2, A3} whose values
equal one. The distribution P (A0|(A1, A2, A3))
is shown in Table 1. Combining the informa-
tion in the variables {A1, . . . , Am} into one vari-

Table 1: P (A0|(A1, A2, A3)).
A0

A1 A2 A3 0 1 2 3

0 0 0 1 0 0 0
1 0 0 0 1 0 0
0 1 0 0 1 0 0
0 0 1 0 1 0 0
1 1 0 0 0 1 0
0 1 1 0 0 1 0
1 0 1 0 0 1 0
1 1 1 0 0 0 1

able (A0) reduces the number of decision rules
determined when solving the ID from 2m+n to
(m + 1)(n + 1), which significantly reduces the
computational complexity of the solution. The
resulting policies are also easier to implement.

The probability potential for the factor Ai

given F is defined according to two parame-
ters. The probabilities of the presence of the
address inconsistency given the two states of
F are αi,0 = P (Ai = 1|F = 0) and αi,1 =
P (Ai = 1|F = 1), αi,0 < αi,1, for i = 1, 2, 3.

Given P (A0|(A1, A2, A3)) and P (Ai|F ) for
i = 1, 2, 3, the probabilities P (A0 = i|F = f)
are determined as

P (A0|F ) = (P (A0|(A1, A2, A3)) ⊗ P (A1|F )
⊗P (A2|F ) ⊗ P (A3|F ))−{A1,A2,A3}

according to Definitions 2 and 3. The result is
shown in Table 2 and follows directly from the
chain rule for Bayesian networks (Pearl, 1988).

3.2.3 Product Characteristics (P0)

The variable P0 has state space ΩP0 = {0, . . .,
n}. The distribution P (P0|F ) is constructed by
using n variables representing the presence of
specific product characteristics for credit card
orders. The variables P1, . . . , Pn are factors re-
lated to an order’s product information that
may be useful for distinguishing a legitimate
order from a fraudulent order. For example,
fraudulent orders are more likely than accept-
able orders to have multiples of the same item.



Table 2: Probability Distribution for A0 given F (P (A0 = i|F = f)).
F = 0 F = 1

A0 = 0 (1− α10)(α20 − 1)(α30 − 1) (1 − α11)(α21 − 1)(α31 − 1)

A0 = 1 α20 + α30 − 2α20α30 α21 + α31 − 2α21α31

+α10(1 − 2α30 + α20(3α30 − 2)) +α11(1 − 2α31 + α21(3α31 − 2))

A0 = 2 α20α30 + α10(α20 + α30 − 3α20α30) α21α31 + α11(α21 + α31 − 3α21α31)

A0 = 3 α10α20α30 α11α21α31

The probabilities of the presence of the product
characteristics given the two states of F are ρj,0

= P (Pj = 1|F = 0) and ρj,1 = P (Pj = 1|F =
1), ρj,0 < ρj,1, j = 1, . . . , n. The variable P0

summarizes the information in {P1, . . . , Pn} in
much the same way as A0 summarizes the in-
formation in the address characteristics for an
order.

Calculation of P (P0|F ) is accomplished in the
same way as the determination of P (A0|F ), so
the details are omitted. More information is
provided in (Cobb, 2010).

3.2.4 Order Size (S)

The chance variable S has ΩS = {s : smin ≤
s ≤ smax}. The probability potential φ for
{F, S} represents the conditional probability
density functions for S given F = 0 and F = 1.

The parameters used in the example of the
next section will be used to describe the po-
tential φ. Suppose the natural log of S is
normally distributed with mean μ = 2.5 and
variance σ2 = 0.5 given that F = 0, i.e.
S|F = 0 ∼ LN (2.5, 0.5). Also, assume the
natural log of S given F = 1 is normally dis-
tributed with μ = 3.5 and σ2 = 0.75, i.e.
S|F = 1 ∼ LN (3.5, 0.75). The MTE potential
fragment representing the conditional distribu-
tion for S given F = 0 is defined as
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Figure 2: MTE Lognormal Approximations.

φ(F = 0, s) = f̂F=0(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

39.78 + 5.71 exp{0.0326(s− 7.39)}
−45.34 exp{0.0032(s− 7.39)}

if 1.46 ≤ s < 2.72

21.72− 1.49 exp{ − 0.0468(s− 7.39)}
−20.17 exp{0.0035(s− 7.39)}

if 2.72 ≤ s < 7.39

...

The full description of the function can be
found in (Cobb, 2010). The MTE potential
fragment φ(F = 1, s) representing the condi-
tional distribution for S given F = 1 is de-
fined similarly, and both MTE potentials are
displayed in Figure 2, overlaid on the actual
lognormal distributions. The prior distribution
for order size is skewed farther to the right for
fraudulent orders.

3.2.5 Utility Function (u0)
The joint utility function u0 has domain

{F, S, I}. Assume that the cost of investigating
an order for fraudulent activity is c (a constant).
The values for u0 are u0(F = 0, I = 0, s) = 0,



u0(F = 0, I = 1, s) = −c, u0(F = 1, I = 0, s) =
−s, and u0(F = 1, I = 1, s) = −c.

If the firm investigates, it incurs the cost of
the investigation, but avoids forfeiting the value
of the merchandise when a fraudulent order is
thwarted. If the firm fails to investigate a fraud-
ulent order, it incurs a cost equal to the value
of the merchandise shipped to fulfill the order.

The joint utility function u0 is approxi-
mated by the MTE potential u1, which is
identical to u0 with the exception of one
term, which is defined (Cobb and Shenoy,
2006) as u1(F = 1, I = 0, s) = (smax −
smin)(13.512870 ·exp

{
0.071387

smax−smin
· (s − smin)

}
−

13.507018)− smin.
For the case where F = 1 and I = 0, the func-

tion u1 is an MTE approximation to the linear
function g(s) = −s. In the ID solution process,
the MTE utility function will be combined via
multiplication with the MTE density potential
for S given F . Since the class of MTE poten-
tials is closed under addition and multiplication,
the result remains an MTE potential. This al-
lows the resulting function to be integrated in
closed form to determine the firm’s maximum
expected utility.

4 Example

This section describes an example where opti-
mal decision rules are developed that allow the
firm to decide when to investigate potentially
fraudulent orders.

4.1 Problem Description

Assume m = n = 3, meaning that there are
three address factors and three product factors
used to determine the conditional distributions
for A0 given F and P0 given F , respectively.
These factors are:

Shipping and billing addresses match (A1)

Untraceable e-mail (A2) — the order origi-
nated from a free, web-based address.

Foreign address (A3)

Leave at home (P1) — the customer requests
that the shipment be left at the door if no
one is home.

Table 3: Parameters for the Example.
Variable F = 0 F = 1

Fraud (F ) 1 − η = .99 η = .01
Match (A1) α10 = .25 α11 = .40
Email (A2) α20 = .01 α21 = .05
Inter. (A3) α30 = .05 α31 = .25
Leave (P1) ρ10 = .20 ρ11 = .30
Rush (P2) ρ20 = .10 ρ21 = .20
Mult. (P3) ρ30 = .05 ρ31 = .075
Size (S) LN (2.5, .5) LN (3.5, .75)

Rush shipping (P2)

Multiple units of the same item (P3)

The presence of these factors is denoted by ei-
ther Ai = 1 or Pj = 1 and corresponds to a
higher incidence of fraud.

The potential representing the prior prob-
ability distribution for F has values P (F =
0) = 1 − η = 0.99 and P (F = 1) = η =
0.01. The conditional probability density func-
tions for order Size (S) are those approxi-
mated by the MTE potential φ in Figure 2.
The cost of investigating an order is c = 10,
and the MTE potential fragment approximat-
ing u0(F = 1, I = 0, s) in the joint utility func-
tion u0 is u1(F = 1, I = 0, s) = 5989.45 −
5993.51 exp{0.000161(s− 1.46)}.

The probability distribution P (A0|F ) is de-
termined using the result in Table 2, and
P (P0|F ) is calculated similarly. A summary of
the parameters in the example problem is given
in Table 3.

4.2 Solution

This section briefly describes the solution to the
example using the fusion algorithm. In this
problem, a possible deletion sequence is F , I ,
S, A0, P0.

The potentials in the model at the outset are
P (F ), P (A0|F ), P (P0|F ), φ for {S, F}, and u1

for {F, S, I}. The first variable in the deletion
sequence is F , and since all potentials contain
F in their domain, all must be combined prior
to the marginalization of F . The combination
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Figure 3: u2 where A0 = 2 and P0 = 2.

results in an MTE utility potential determined
as

u′
2 = P (F ) ⊗ P (A0|F ) ⊗ P (P0|F ) ⊗ φ ⊗ u1 .

The variable F is marginalized as

u2(A0 = i, P0 = j, I = k, s) =

u′
2(F = 0, A0 = i, P0 = j, I = k, s)

+u′
2(F = 1, A0 = i, P0 = j, I = k, s)

for all (i, j, k, s) ∈ Ω{A0,P0,I,S}. The function
u2 is shown graphically in Figure 3 for the case
where the number of observed address incon-
sistencies and suspicious product characteristics
are both two (A0 = 2 and P0 = 2). The ex-
pected utility that results from investigating the
potential fraud (I = 1) is less than the expected
utility associated with not investigating (I = 0)
for smaller orders.

The objective of the firm is to decide op-
timally whether to investigate potential fraud
after it observes the values of A0, P0, and S.
Thus, for each configuration of states of the dis-
crete variables A0 = i and P0 = j, the firm
must choose a threshold Ψi,j for order size us-
ing the procedure in Definition 4. As an exam-
ple, Ψ2,2 = 31.96 and is determined by finding
the point where the two functions in Figure 3
are approximately equal. For values of S below
this threshold, the firm will be better off in the
long run not investigating the order for poten-
tial fraud. For values of S above this threshold,
due to the potential loss of merchandise, the
firm should investigate potential fraud on an
order. Methods of investigating fraud include

Table 4: Decision Thresholds Ψi,j.
Ψ P0 = 0 P0 = 1 P0 = 2 P0 = 3

A0 = 0 95.56 89.86 76.96 61.96
A0 = 1 83.46 67.16 52.56 44.06
A0 = 2 47.16 38.96 31.96 26.86
A0 = 3 28.16 23.16 19.06 16.16

validating the billing address, shipping address,
e-mail address, and phone number, and contact-
ing the customer to confirm the order. This in-
vestigation is carried out at an average cost of
c = 10 per order.

The decision variable I is removed from the
model by constructing the following MTE po-
tential using the utility function u2 and the
threshold values Ψi,j:

u3(A0 = i, P0 = j, s) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u2(A0 = i, P0 = j, I = 0, s)
if smin ≤ s < Ψi,j

u2(A0 = i, P0 = j, I = 1, s)
if Ψi,j ≤ s ≤ smax .

for i = 0, 1, 2, 3 and j = 0, 1, 2, 3.

4.3 Results

The decision thresholds Ψi,j for the example
problem are shown in Table 4. At higher num-
bers of address inconsistencies and suspicious
product characteristics, the order size thresh-
olds are lower, since the firm has more reason
to believe that such orders are not legal.

The maximum expected utility from following
the decision thresholds is calculated as

u4 =
n∑

j=1

(
m∑

i=1

(∫
ΩS

u3(A0 = i, Po = j, s) ds

))
.

For the example problem, the maximum ex-
pected utility is u4 = −0.31173, which repre-
sents the fraud investigation and loss expense
stated on a per order basis.

Additional results and sensitivity analysis for
this example are provided in (Cobb, 2010).

5 Conclusions

An ID model that can be used to detect poten-
tially fraudulent online credit card transactions



was introduced. A business can employ such a
model to establish decision policies that guide
employees to investigate orders that are most
likely to be suspect. By following such policies,
a business can minimize its total fraud-related
expenses, which include both the costs of lost
merchandise and the expense of following up on
suspicious orders.

In addition to considering order size as a cri-
teria for identifying potentially fraudulent or-
ders, the ID model allows a business to consider
other characteristics of the address and product
information on an order. When more of these
factors indicate that fraud may be present, the
order size threshold used to decide whether or
not to investigate an order is lowered, because
an illegal order becomes more likely. Using the
ID to establish such rules allows a business to
investigate the orders that are most likely to be
fraudulent and save the cost of such inquiries on
orders—even large ones—that are most likely
legitimate.

Future research can incorporate additional
complexities to make the model more realistic.
For instance, an implicit assumption is that the
investigation always concludes with certainty
that an order is fraudulent. A node represent-
ing the result of the investigation can be added
to the ID to relax this assumption. In cases
where a good order is mistakenly canceled, the
cost of the customer’s dissatisfaction should be
considered in the utility function. Also, the in-
vestigation cost, c, may not be a constant and
can be modeled as a random variable, perhaps
conditional on the number of suspicious address
and product characteristics observed.
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