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Abstract

We tackle the problem of how to use information from multiple (in)dependence models,
representing results from different experiments, including background knowledge, in causal
discovery. We introduce the framework of a causal system in an external context to
derive a connection between strict conditional independencies and causal relations between
variables. Constraint-based causal discovery is shown to be decomposable into a candidate
pair identification and a subsequent elimination step that can be applied separately from
different models. The result is the first principled, provably sound method that is able
to infer valid causal relations from different experiments in the large sample limit. We
present a possible implementation that shows what results can be achieved and how it
might be extended to other application areas.

1 Introduction

Discovering causal relations from observational
data is an important, ubiquitous problem in sci-
ence. In many application areas there is data
available from many different but related exper-
iments. Results obtained from one data set are
often used to either corroborate or challenge re-
sults from another. Yet how to reconcile appar-
ently contradictory information from multiple
sources, including background knowledge, into a
single, more informative model remains a long-
standing open problem.

Constraint-based methods like the FCI-
algorithm (Spirtes et al., 2000) are provably
correct in the large sample limit, even in the
presence of latent variables; the same holds for
Bayesian methods like the greedy search al-
gorithm GES (Chickering, 2002) (with addi-
tional post-processing steps to handle hidden
confounders). Both are defined in terms of mod-
eling a single data set and have no principled
means to relate to results from other sources in
the process. Recent developments, like the ION-
algorithm by Tillman et al. (2008), show that it
is possible to integrate multiple, partially over-
lapping data sets, provided they originate from

identical experiments. These are still essentially
single model learners as they assume there is
one underlying structure that can account for
all observed dependencies in the different mod-
els. In practice there are often inconsistencies
between data sets, precisely because the exper-
imental circumstances were not identical. The
way out is to distinguish between causal depen-
dencies internal to the system under investiga-
tion and merely contextual dependencies.

In section 4 we show that causal discovery
can be decomposed into two separate steps: a
conditional independency to identify a pair of
possible causal relations (one of which is true),
and then a conditional dependency to eliminate
one of the candidates, leaving the other. The
two steps are independent and rely only on the
observed (in)dependencies between a subset of
variables. As a result conclusions remain valid,
even when taken from different models.

2 Graphical model preliminaries

First a few familiar notions from graphical
model theory used throughout the article.

A directed graph G is a pair 〈V,E〉, where V is
a set of vertices or nodes and E is a set of edges



between pairs of nodes. Edges are represented
by arrows X → Y , where node X is the parent
of Y and Y is a child of X. Two vertices are
adjacent in G if there is an edge between them.
A path π = 〈V0, . . . , Vn〉 between V0 and Vn in
G is a sequence of distinct vertices such that for
0 ≤ i ≤ n− 1, Vi and Vi+1 are adjacent in G. A
directed path is a path that is traversed entirely
in the direction of the arrows. A directed acyclic
graph (DAG) is a directed graph that does not
contain a directed path from any node to itself.
A vertex X is an ancestor of Y (and Y is a
descendant of X) if there is a directed path from
X to Y in G or if X = Y . A vertex Z is a
collider on a path π = 〈. . . , X, Z, Y, . . .〉 if it
contains the subpath X → Z ← Y , otherwise it
is a noncollider. A trek is a path that does not
contain any collider.

For disjoint sets of vertices X, Y and Z in a
DAG G, X is d-connected to Y conditional on Z
(possibly empty), iff there exists an unblocked
path π = 〈X, . . . , Y 〉 between some X ∈ X and
some Y ∈ Y, i.e. such that every collider on π is
an ancestor of some Z ∈ Z and every noncollider
on π is not in Z. If not, then all such paths are
blocked, and X is said to be d-separated from Y
given Z. Note that in a DAG G, an unblocked
path π between two vertices X and Y cannot be
blocked by conditioning on a node Z that is not
on the path, and that a blocked path can only
be unblocked by conditioning on (descendants
of) all colliders on the path; see (Pearl, 2000;
Spirtes et al., 2000) for more details.

Let p be a probability distribution over a set
of variables V, and let X, Y and Z denote three
disjoint subsets of V, then an (in)dependence
model is a set of (in)dependence statements
that hold in p of the form ‘X is independent of
Y given Z’, denoted X⊥⊥Y |Z, and/or ‘X is de-
pendent of Y given Z’, denoted X⊥⊥�Y |Z, with
set Z possible empty. (In)dependence models
are often compactly and intuitively represented
in the form of a graphical model (directed, undi-
rected or other), in combination with a criterion
to link the structure of the graph to the implied
(in)dependencies, similar to the d -separation for
DAGs. We will pose no restrictions on shape or
type of the (in)dependence models considered in

this article, other than that they are internally
consistent.

3 Modeling the system

This section introduces the framework of a
causal system in an external context to model
experiments, as well as a number of assumptions
adopted throughout the rest of this article.

3.1 Causal DAG

A causal DAG is a graphical model in the
form of a DAG where the arrows represent
direct causal interactions between variables in
a system. A prime characteristic of a causal
structure is the so-called Manipulation Princi-
ple (Spirtes et al., 2000), which boils down to
the fact that changing/manipulating a variable
will affect all and only its descendants in the
causal DAG. In this article we will not con-
cern ourselves with the interpretation of causal-
ity any further; for that the reader is referred
to (Cartwright, 2004; Williamson, 2005). In-
stead, we simply assume that the systems we
consider can be represented by some underlying
causal DAG over a great many observed and
unobserved nodes. In a causal DAG GC there
is a causal relation from variable X to variable
Y iff there is a directed path π from X to Y
in GC , otherwise it is a noncausal relation. A
direct link X ⇒ Y in the graph GC means that
there is a causal path from X to Y that is not
mediated by any other node in GC .

The ubiquitous causal Markov condition
links the structure of a causal graph to its prob-
abilistic concomitant, (Pearl, 2000): two vari-
ables X and Y in a causal DAG GC are de-
pendent given a set of nodes Z, iff they are con-
nected by a path π in GC that is unblocked given
Z. An immediate consequence is that there is a
dependence X ⊥⊥� Y iff there is a trek between
X and Y in the causal DAG.

Another common assumption which we will
adopt throughout the article is the causal
faithfulness condition which implies that all
and only the conditional independence relations
entailed by the causal Markov condition applied
to the true causal DAG will hold in the joint
probability distribution over the variables in GC .



For an in-depth discussion of the justification of
and connection between these assumptions in
causal inference, see (Pearl, 2000; Spirtes et al.,
2000; Zhang and Spirtes, 2008).

3.2 Experimental context

Random variation in a system (a.k.a. ‘error
terms’ in a structural equation model (SEM)),
corresponds to the impact of unknown external
variables (Pearl, 2000). Some external factors
may be actively controlled, as for example in
clinical trials, or passively observed as the nat-
ural embedding of a system in its environment.
We refer to both observational and controlled
studies as experiments. If there are external
factors that affect two or more variables in a
system simultaneously, then this can lead to an
observed dependency that is not part of the sys-
tem (a.k.a. ‘correlated errors’ in SEMs). Both
can be represented by modeling this external
environment explicitly as a set of unknown, hy-
pothetical context nodes that causally affect the
system under scrutiny. We introduce:

Definition 1. The external context of a causal
DAG GC , denoted GE , is an additional set of
mutually independent nodes U in combination
with links from every U ∈ U to one or more
nodes in GC .

The total causal structure of an experiment
on a causal system GC in external context GE is
then denoted by GT = {GE + GC}. The context
only introduces arrows from nodes in GE to GC

which can never result in a cycle if there was
not one in GC already (there are no links be-
tween nodes in GE). Therefore, the structure of
an experiment GT is also a causal DAG. In this
paradigm different experiments become varia-
tions in context of an invariant causal system.

Figure 1 depicts a causal system in two differ-
ent contexts (double lined arrows indicate direct
causal relations; dashed circles represent unob-
served variables). The experiment on the right
hand side will result in an observed dependency
between variables A and B, whereas the one on
the left will not.

Here we only focus on the (in)dependence re-
lations I(V ⊂ GC) that exist in the joint proba-

Figure 1: A causal system GC in different experiments

bility distribution P (V) over the observed sub-
set of variables for a given causal experiment
{GE + GC}. With this we can state the goal
of causal discovery from multiple models as:
“Given experiments with unknown total causal
structures GT = {GE + GC}, G′T = {G′E + GC},
etc., and corresponding (in)dependence models
I(V ⊂ GC), I ′(V′ ⊂ GC), etc., which variables
are connected by a directed path in GC?”. We
assume that in each experiment the large sam-
ple limit distributions are known and have been
used to obtain categorical statements about
probabilistic (in)dependencies between sets of
nodes. As stated, we will also always assume
that the causal Markov and causal faithfulness
condition are satisfied.

4 Conditional (in)dependence in
causal systems

Given the problem statement above, we need
a way to combine (in)dependence statements
from different models in order to identify causal
relations in the underlying causal structure GC

that is assumed to be at the heart of all of them.
Methods like FCI and GES tackle this recon-
struction problem in terms of properties that
are optimal or minimal w.r.t. a model for a given
experiment, but this gives no means to relate re-
sults from different models. Another approach,
taken in the ION algorithm, is to use ancestral
graph theory (Richardson and Spirtes, 2002)
to establish what probabilistic (in)dependencies
will be observed in a causal experiment for dif-
ferent subsets of observed variables, and then
use this to find relations that must be shared
by all. But this still does not allow to combine



results from different experiments, like in fig. 1.
A way out of this predicament comes courtesy

of a remarkable fact that so far (to the best of
our knowledge) has escaped detection in causal
research: there is a fundamental connection be-
tween causality and a certain type of conditional
independence, that applies regardless of the en-
compassing model. This connection will enable
us to bring together results from arbitrary ex-
periments in a method for causal discovery from
multiple (in)dependence models (section 6). To
exclude irrelevant independencies we first intro-
duce the following notion:

Definition 2. Two nodes X and Y are strictly
conditionally (in)dependent given a set of nodes
Z, iff X is conditionally (in)dependent of Y
given a minimal set of nodes Z.

We denote a strict (in)dependence statement
by placing it in square brackets. The minimal
in the definition implies that the relation does
not hold for any proper subset of the (possibly
empty) set Z, e.g. a strict conditional indepen-
dence [X⊥⊥Y |Z] implies both X⊥⊥Y |Z and
∀Z′ ( Z : X⊥⊥�Y |Z′. It aims to capture the no-
tion that it is really the entire set Z that makes
X and Y independent. The relevance of this
notion lies in the fact that, in a causal system,
certain causal relations between three variables
X, Y and Z can never result in an observed
strict conditional independence [X⊥⊥Y |Z], no
matter what the context is.

Example 1. For the causal system GC in fig.2a
(two variables X ⇒ Z with no causal links to
or from a variable Y ), there is no context GE

that can result in [X⊥⊥Y |Z]: if there are no di-
rected paths from Z to X and Y then X ⊥⊥� Y
implies that X and Y are d -connected by di-
rected paths 〈U, . . . ,X〉 and 〈U, . . . , Y 〉 that do
not contain Z. But then conditioning on Z can-
not block these paths, ergo not X⊥⊥Y |Z. This
does not apply to causal system in fig.2b: for the
indicated context GE the strict conditional inde-
pendence relation [X⊥⊥Y |Z] will be observed.

A quick survey shows that all causal struc-
tures over three nodes that can lead to an ob-
served [X⊥⊥Y |Z] have a direct causal link from
Z to X and/or Y .

Figure 2: Causal systems GC that: (a) cannot, and (b)
depending on the context GE can lead to an observed
strict conditional independence relation [X⊥⊥Y |Z].

We can generalize this result to sets of nodes:

Theorem 1. In an experiment with causal
structure GT = {GE + GC}, a strict conditional
independence [X⊥⊥Y |Z] implies causal links
Z ⇒ X and/or Z ⇒ Y from every Z ∈ Z to
X and/or Y in GC .

Proof. We construct a directed path for an ar-
bitrary Z1 ∈ Z to either X or Y . Z1 must be a
noncollider on some path π1 connecting X and
Y given all the other nodes Z\Z1

. Follow π1 in
the direction of the arrows (choose either branch
if Z1 has two outgoing arrows along π1) until ei-
ther X or Y or a collider that is an ancestor of
one of the remaining nodes in Z\Z1

is encoun-
tered. If X or Y is found first then a directed
path has been found and we are done. If not
then we can go on from the collider along π1 to
its descendant node Z2 ∈ Z\Z1

. This node in
turn must be a noncollider on some other path
π2 that d-connects X and Y given all nodes
Z\Z2

. Again this path can be followed in the
direction of the arrows until either X or Y or a
collider that is ancestor of one of the nodes in
Z\{Z1,Z2} is encountered. (This cannot be one of
the previous nodes since that would imply the
existence of a directed path.) We can continue,
and as long as neither X nor Y is reached we
will find new nodes from Z until all have been
encountered. At that point the final node will
lie on a trek connecting X and Y that can no
longer be blocked by any other node in Z, and
therefore will have a directed path to X or Y .
By construction that means there is also a di-
rected path from Z1 to either X or Y in GC ,
which implies a causal relation Z1 ⇒ X and/or
Z1 ⇒ Y .



This theorem recognizes conditional indepen-
dence as the ‘local signature’ of causality. It is
not difficult to see that for a single Z the causal
link to X or Y is also unconfounded (no hidden
common parent). This plays an important role
in calculating the magnitude of causal effects,
e.g. via the front-door criterion (Pearl, 2000).

A similar result exists for conditional depen-
dence and noncausal relations, something we al-
ready knew for v -structures (unshielded collid-
ers X → Z ← Y ) from (Spirtes et al., 2000),
although not in the general form given here:

Theorem 2. Let X, Y , Z and W be disjoint
(sets of) nodes in an experiment with causal
structure GT = {GE + GC}. If there is a condi-
tional independence X⊥⊥Y |W and a minimal
set Z such that X⊥⊥�Y | {W ∪ Z}, then there
are no causal links Z ⇒ X, Z ⇒ Y , and/or
Z ⇒ W from any Z ∈ Z to any X, Y and/or
W ∈W in GC .

Proof. We show it holds for arbitrary Z ∈ Z.
In short: Z must be a (descendant of a) col-
lider on a path connecting X and Y (otherwise
it would not be needed to unblock the path);
any directed path from Z to a W implies that
conditioning on Z is not needed when already
conditioning onW . No directed paths from Z to
W implies that if there existed a directed path
from Z to X or Y then it cannot be blocked
by any W ; neither can it be blocked by any
Z\Z (otherwise Z is not minimal). But then
such a path would make Z a noncollider on an
unblocked path between X and Y given Z\Z ,
contradicting minimality.

With the addition of W the theorem also ap-
plies to unshielded colliders where X and Y are
not independent. We need one more result that
is particularly useful to eliminate direct links
between variables in a causal model:

Theorem 3. In an experiment with causal
structure GT = {GE + GC}, every conditional
independence X⊥⊥Y |Z implies the absence of
causal paths X ⇒ Y or X ⇐ Y in GC between
X and Y that are not mediated by nodes in Z.

Proof. If there did exist causal paths between X
and Y not mediated by Z then conditioning on

Z would not block all directed paths (let alone
treks) between X and Y , so then X⊥⊥�Y |Z.

5 Identifying causal relations

Theorem 1 and 2 together show that causal dis-
covery can be decomposed into two separate
steps: having a means of identifying a pair of
links that harbors a causal relation as well as a
means of eliminating a causal relation as the ori-
gin of an observed link, the obvious consequence
is that this allows the positive identification of
a definite causal relation.

Corollary 1. In an experiment GT = {GE +
GC}, if there exists a strict conditional inde-
pendence [X⊥⊥Y |Z], then if there also exists a
conditional independence X⊥⊥V |W and Z is
a minimal set such that X⊥⊥�V | {W ∪ Z}, then
there are causal links Z ⇒ Y from every Z ∈ Z
to Y in GC .

Proof. By theorem 1 [X⊥⊥Y |Z] implies causal
links from every Z ∈ Z to X and/or Y . The
second condition, X⊥⊥V |W with Z minimal
such that X⊥⊥�V | {W ∪ Z}, applies to theorem
2 and implies that there are no causal links from
any Z ∈ Z to X. With all links from Z to X
eliminated, the only remaining option is causal
links Z ⇒ Y from every Z ∈ Z to Y .

To illustrate how these rules can be applied
to infer causal links directly from observed
(in)dependence relations, we look at two in-
dependence models (represented in figure 3 as
CPAGs, see Appendix A), that are known, e.g.
from the FCI-algorithm (Spirtes et al., 2000), to
contain a definite causal link, and show how this
also follows as a straightforward application of
theorems 1 and 2.

Example 2. The aptly named Y-structure in
the l.h.s. of fig. 3 plays an important role in
causal discovery: every such substructure in
a minimal independence model derived by the
FCI-algorithm allows the identification of causal
link Z ⇒ Y , i.e. a directed path from Z to
Y is present in all possible causal DAGs cor-
responding to the observed distribution over
the variables. Mani et al. (2006) investigated
marginal Y-structures embedded in data sets. It



Figure 3: Two independence models in the form of a
CPAG: the ‘Y-structure’ (left) and a discriminating path
(right), both with a detectable causal link Z ⇒ Y (arrow
in CPAG); see examples for detailed description.

was shown that for any DAG, in the large sam-
ple limit, a consistent Bayesian scoring function
(Heckerman et al., 1999) will assign a higher
score to a structure with a direct link Z → Y ,
when marginalizing over the variables, than to
any structure without. These results are eas-
ily understood in terms of our theorems: any
(embedded) Y-structure satisfies the relations
[X⊥⊥Y |Z] and [X⊥⊥�W |Z]. By theorem 1, the
first implies Z ⇒ X or Z ⇒ Y , the second elim-
inates Z ⇒� X by theorem 2, leaving Z ⇒ Y .

As another example, we look at the following
important, but somewhat awkward, construct
in causal inference: in a graph G, a path π =
〈X, . . . ,W,Z, Y 〉 is a discriminating path for Z
if X is not adjacent to Y and all nodes between
X and Z are colliders on π and parents of Y .

Example 3. The path π = 〈X,V,W,Z, Y 〉 in
the r.h.s. of figure 3 is a discriminating path for
Z. The relevance of such a path for causal dis-
covery lies in the fact that if Z → Y is present
in the graph G, then it is present in all members
of the equivalence class of G, and hence it cor-
responds to a definite causal link (Spirtes et al.,
2000; Zhang, 2008). The causal implication of
this discriminating path can also be understood
in terms of the previous rules: by definition of
π it follows that X and Y are strict condition-
ally independent given some set Z (otherwise
they would be adjacent in G). If there is a link
Z → Y , then Z (and all other nodes between X
and Z on π) is necessarily part of any Z that will
d -separate X and Y . Therefore, figure 3 implies
[X⊥⊥Y |Z ∪ {V,W}] and X⊥⊥�Z |∅, which by
theorems 1 and 3 implies Z ⇒ Y .

6 Causal relations from multiple
models

As all three theorems (rules) in section 4 hold
separately for experiments GT irrespective of the
context GE , it means that (non)causal results
obtained in one experiment should also apply
to another, provided the causal system GC re-
mains invariant. In that case, an algorithm im-
plementing these rules should be able to con-
struct a single, overall model of the causal rela-
tions that is more informative than any of the
(in)dependence models separately.

For that we note that all noncausal infor-
mation (‘X does not cause Y’) from rules (2)
and (3) derives from single models in isolation,
and so can be processed first and collected in
a matrix of (non)causal relations found. Subse-
quent causal relations identified via rule (1) also
imply reverse noncausal information, which in
turn can lead to new causal relations. This sug-
gests a repeated loop until no new information
can be found. As input for the algorithm we
use CPAGs (see Appendix A) as a concise and
intuitive graphical representation of all invari-
ant (in)dependence features in an observed dis-
tribution, e.g. as learned by the extended FCI-
algorithm (Zhang, 2008). To convey all uncov-
ered information about the underlying causal
structure GC we choose a causal PAG G as the
output model: similar in form and interpre-
tation to a CPAG, where a missing edge be-
tween variables corresponds to the absence of a
direct causal path, every detected direct non-
causal link X ⇒� Y has an arrowhead at X in
G, every detected direct causal link X ⇒ Z has
a tail mark at X in G, and circle marks rep-
resent unknown, possibly causal relations. A
straightforward implementation is provided in
algorithm 1.

To illustrate the algorithm, consider the
CPAG models corresponding to two experi-
ments on the l.h.s. of figure 4. Despite the dif-
ferent, even apparently contradictory, observed
(in)dependence relations, the combined causal
model on the r.h.s. is readily derived.
Starting from the fully connected graph, in
the first loop over the models, rule (3) in line



Input : set of CPAGs Pi ∈ P
Output : causal graph G

1: G ← fully connected graph with circle marks
2: MC ← 0 . empty set of (non-)causal relations
3: for all Pi ∈ P do
4: for all (X, Y, Z) ∈ Pi, with no edge X − Y do
5: MC ← X ⇒� Y , Y ⇒� X if X⊥⊥Y |∅ . Rule (3)
6: for all W ∈ {Pi \X, Y, Z} do
7: if X⊥⊥Y |W then
8: G ← eliminate edge X −− Y . Rule (3)
9: if X⊥⊥�Y | {W ∪ Z} then

10: MC ← Z ⇒� {X, Y,W} . Rule (2)
11: end if
12: end if
13: end for
14: end for
15: end for
16: G ← noncausal info in MC . circles to arrowheads
17: repeat
18: for all Pi ∈ P do
19: for all (X, Y ) ∈ Pi, with no edge X − Y do
20: for all Z ∈ {Pi \X, Y } do
21: if [X⊥⊥Y |Z] and X ⇒� Z ∈MC then
22: MC ← Z ⇒ Y and Y ⇒� Z . Rule (1)
23: end if
24: end for
25: end for
26: end for
27: G ← (non)causal info in MC . tails/arrowheads
28: until no more new noncausal information found

Algorithm 1: Causal structure inference algorithm

8 eliminates all links except A − C, B − C,
B − F , C − D, C − E and E − F (missing
edges in input model). In the same loop, model
1 has [A⊥⊥�B | {C/D/E/F}] which by rule (3)
in line 5 implies A⇒� B and B ⇒� A, and from
which rule (2) in line 10 derives noncausal links
{C/D/E/F} ⇒� {A,B} (for empty W in the-
orem 2) . In the subsequent repeated loop,
lines 17-28, model 1 has [A⊥⊥F | {B,C}] which
by rule (1) in line 22 with the earlier B ⇒� A,
implies B ⇒ F . Similarly, [C⊥⊥F | {B,E}] al-
lows the conclusion E ⇒ F . Next, model 2
has [A⊥⊥D |C] which, together with C ⇒� A im-
plies C ⇒ D. Finally, from [A⊥⊥E |C] follows
C ⇒ E. After that the algorithm terminates at
line 28 with the causal CPAG on the r.h.s. as
the final output. (Figure 1 shows two contexts
that can account for the observed dependencies
in figure 4).

To the best of our knowledge, this is the
first algorithm ever to perform such a deriva-
tion. The input in the form of CPAGs is con-
venient, but not essential: any (in)dependence

Figure 4: Independence models (in CPAG form) for
two experiments, one resulting causal model (cf. fig.1).

model can be used with only minor alterations
to the implementation. We could even directly
incorporate (non)causal information from back-
ground knowledge in the first loop. In the cur-
rent form the example derivation is almost in-
stantaneous, but soon becomes unfeasible for
larger networks. Also the set of observed vari-
ables can differ between input models, but with
little overlap causal information may be lost if
it cannot be transferred to the output graph
when other information has eliminated that par-
ticular direct link. Nevertheless, all identified
(non)causal relations remain valid. These prob-
lems can be addressed and significant improve-
ments can be made, but that requires additional
results and explication and will be postponed to
another article.

7 Discussion

We have shown the first principled method to
use information from different (in)dependence
models in causal discovery. It is based on the
discovery of a fundamental property that identi-
fies (strict) conditional independence as the lo-
cal signature of causality. All (non)causal re-
lations uncovered this way are sound, provided
the input models are valid. The number and
individual size and origin of the input models
are irrelevant and could include different exper-
iments, specific background knowledge or hypo-
thetical information. An exciting possibility is
to use this approach in combination with recent
developments that employ other properties of
the distribution, e.g. non-Gaussianity (Shimizu
et al., 2006) or nonlinear features (Hoyer et al.,
2009), to detect causal relations.

The proposed algorithm is sound and works
well on small models (. 10 nodes) with a rea-



sonable degree of overlap. In order to apply
the method to larger, more realistic models with
less overlap, further research should concentrate
on the computational complexity of the search
for (new) strict conditional independencies and
ways to handle indirect causal information. If
the input models become less reliable, for ex-
ample when derived from real data sets where
the large sample limit no longer applies, incor-
rect or inconsistent causal conclusions may oc-
cur. In that case, results might be generalized
to quantities like ‘the probability of a causal re-
lation’ based on the strength and reliability of
the required conditional (in)dependencies in the
available data.
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Appendix A. CPAGs

For a causal DAG the distribution over a sub-
set of observed variables may not be faithfully
representable by a DAG. A complete partial an-
cestral graph (CPAG) P represents the Markov
equivalence class [G] of a DAG G when latent
variables may be present (Zhang, 2008). It
is a graph with either a tail ‘−’ (signifying
ancestorship), arrowhead ‘I’ (signifying non-
ancestorship) or circle mark ‘◦’ at each end of
an edge. There is a tail or arrowhead on an edge
in P iff it is invariant in [G], otherwise it has a
circle mark. Bi-directed edges J−I in a CPAG
indicate the presence of a latent common cause;
arcs −−I indicate a causal relation. The CPAG
is unique and maximally informative for [G]. An
intuitive property of CPAGs is that two nodes
X and Y are not connected by an edge iff there
is some set Z such that X⊥⊥Y |Z; see (Richard-
son and Spirtes, 2002; Zhang, 2008) for more
information on how to read (in)dependencies
directly from a CPAG using the m-separation
criterion.
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