
Optimizing the triangulation of Dynamic Bayesian Networks

Morgan Chopin and Pierre-Henri Wuillemin
LIP6

University of Paris 6
75016, Paris, France

Abstract

In this paper, we address the problem of finding good quality elimination orders for trian-
gulating dynamic Bayesian networks. In Bilmes and Bartels (2003), the authors proposed
a model and an algorithm to compute such orders, but in exponential time. We show that
this can be done in polynomial time by casting the problem to the problem of finding a
minimum s–t cut in a graph. In this approach, we propose a formal definition of an inter-

face (a set of nodes which makes the past independent from the future), we link the notion
of an interface with the notion of a graph cut-set. We also propose an algorithm which
computes the minimum interface of a dBN in polynomial time. Given this interface, we
show how to get an elimination order which guarantees, theoretically and experimentally,
the triangulation quality.

1 Introduction

Many domains deal with monitoring the evolu-
tion of complex system over time: localization
of a robot in a dynamic environment (Fox et al.,
1999), fault diagnostics analysis (Weber, 2002),
monitoring physicochemical reactions (Baudrit
et al., 2009). Many formal tools have been de-
veloped for describing such systems, including
hidden Markov models, Kalman filters, and dy-

namic Bayesian networks (dBNs) (Dean and
Kanazawa, 1990). All of these models share the
same idea of representing the state of a system
and its changes over time according to a prob-
abilistic transition model and a prior distribu-
tion. Moreover, they assume the system to be
first-order Markovian (the state at time t only
depends on the state at time t−1) and homoge-

neous (the parameters do not vary with time).
DBNs are graphical models that generalize hid-
den Markov models and Kalman filters by fac-
toring the state as a Bayesian network (Pearl,
1988), hence providing an easy way to model
and specify the parameters of a complex sys-
tem. A dBN is then used to answer some query

we may ask by making an inference (i.e. com-
pute the probability of a state given some ob-

servations). Numerous types of queries lead to
numerous types of inference. In this paper, we
study the offline inference problem: computing
the probability of a state at time t ∈ [0, T] given
the evidences we have during the simulation.

Exact inference in Bayesian networks is com-
putationally hard (Cooper, 1990). This is even
more difficult in the case of a dBN because it
monitors variables over time and thus can be
arbitrarily large, depending of the duration of
the process. Among all the methods that per-
form inference in dBNs (Murphy, 2002), some
are based on triangulation such as the junction
tree inference (Jensen et al., 1990). Finding a
good triangulation, i.e. finding an elimination
order such that the resulting triangulated graph
has the smallest maximum clique, is crucial for
tractable inference but is a NP-complete prob-
lem (Arnborg et al., 1987). Hence, we must
resort on heuristic approach to find good elimi-
nation orders.

In the case of dBNs the most promising work
of finding good quality elimination orders uses a
constrained elimination scheme (Kjærulff, 1994;
Murphy, 2002; Darwiche, 2001; Bilmes and Bar-
tels, 2003). In this approach, the use of con-
straints reduce the amount of elimination orders

to consider. Furthermore, these constraints do
not reduce the triangulation quality (Darwiche,
2001). In this paper, we propose a method that
follows the same idea by computing such elimi-
nation orders in an efficient1 way. We also give
some theoretical and experimental results.

Section 2 gives the basic background and de-
fines the notion of interface. In section 3, we
present the state of the art inference methods
in a dBN and their complexity. In section 4, we
present our method. Experimental results are
given in section 5 and we conclude in section
6. Throughout this paper, we assume that the
reader has some knowledge in graphical models
(Pearl, 1988).

2 Dynamic Bayesian networks

We begin by defining some notations. Discrete
random variables will be denoted by X1, X2,...
and Xi

t will denote the i-th variable at time t.
We will use the notation Xa:b as a shortcut for
Xa, ...,Xb. In a Bayesian network, we will de-
note by pa(X) the parents of a node X in the
graph, i.e. the set of nodes with an arc to X.
A set of random variables will be denoted by
X; its size, denoted size(X), corresponds to the
cardinal product of each variable in X and its
dimension, denoted |X|, is the number of vari-
able in X. Finally, we will use Xt to denote the
set of variables at time t.

Dynamic Bayesian networks (dBNs) can be
viewed as an extension of Bayesian networks for
modeling dynamic systems. Since we assume
that the process is first-order Markovian and
homogeneous, we can write the transition model
as follows:

P (Xt|X0:t−1) = P (Xt|Xt−1) = P (X1|X0)

In addition, a dBN exploits independences
into X1 and X0 to factorize P (X1|X0) and
P (X0). This leads us to the following defini-
tion:

Definition 1. A 2-Time-slice Bayesian Net-

work (2-TBN) is a Bayesian network defined as
follows: the nodes are partitioned into two sets
X0 and X1 called slices. The 2-TBN represents

1By efficient we mean polynomial time.

X
1
1

X
1
2

X
1
3

X
1
1

X
0
1

X
0
2

X
0
3

X
0
1

X
0
0

X
1
0

X
0
0

X
1
0

t = 0 t = 1 t = 2 t = 3

X
2
0

X
2
1

X
3
1

X
2
0

X
2
1

X
2
2

X
2
3

X
3
1

X
3
2

X
3
3

Figure 1: A 2-TBN unrolled three times to get
a dBN of length T = 3. Here I→t = {X0

t ,X
2
t }

and I←t = {X0
t ,X

1
t ,X

2
t }.

the transition model such that:

P (X1|X0) =
n−1∏

i=0
P (Xi

1|pa(X
i
1))

where pa(Xi
1) ⊂ X0 ∪X1 and the prior distri-

bution:

P (X0) =
n−1∏

i=0
P (Xi

0|pa(X
i
0))

where pa(Xi
0) ⊂ X0.

We can then define a dBN (see Figure 1):

Definition 2. A dynamic Bayesian network of
length T (denoted as GT = (X = X0 ∪ ... ∪
XT ,E)) is a Bayesian network resulting by ”un-
rolling” a 2-TBN in T time steps. Each state
Xt of the dBN is called the slice t. We denote
by GmT the moralization of the dBN GT .

In the next section, we define the notion of
interface that plays a crucial role in our trian-
gulation method.

2.1 The notion of interface

An interface is a subset of nodes such that if
they were removed, the past would be indepen-
dent from the future2. This notion admits sev-
eral definitions (Kjærulff, 1994; Murphy, 2002;
Darwiche, 2001; Bilmes and Bartels, 2003), we
propose one that allows us to encompass several
definitions found in the literature and makes ex-
plicit the link between an interface and a cut-set
in a graph.

2Note that we use the term interface to be consis-
tent with the literature. Heggernes (2006) uses the term
separator.

Definition 3. Let GmT = (X,E) a moralized
dBN of length T , a subset I ⊂ X is called inter-

face if every path from a node of X0 to a node
of XT in GmT contains at least one node in I. A
minimal interface I is such that for all I

′

⊂ I,
I
′

is not an interface.

Now we prove that forward and backward in-
terfaces defined in Darwiche (2001) are also in-
terfaces. First, we recall what are backward and
forward interfaces:

Definition 4. Let GT = (X,E) a dBN of length
T , the forward interface I→t is the set of nodes
in slice t < T that have at least one child in slice
t + 1. The backward interface I←t is the set of
all nodes X in slice t > 0 such that X, or one
of its children, has a parent in slice t− 1.

Proposition 1. Let GT = (X,E) a dBN of

length T , then I→t for all t < T and I←
t
′ for

all t
′

> 0 are interfaces.

Proof. Let t < T , we will prove the result for
I→t . The proof for the backward interfaces is
similar. Let N→t = Xt − I→t . Suppose there
is a path from a node of X0 to a node of XT

that does not contain any node in I→t in the
moralized dBN. Thus, there must be an edge
(u, v) such that u ∈ N→t and v ∈ Xt+1. If (u, v)
was an arc in the non-moralized version, then u

should be in I→t by definition, but this leads to a
contradiction. If (u, v) is an edge added during
the moralization, then u and v have a common
child in the non-moralized version. This child
is either in Xt or in Xt+1. If it belongs to Xt+1

then u has a child in slice t+1 and should be in
I→t which leads to a contradiction. If it belongs
to Xt then there exists an arc from the future
to the past which is forbidden into a dBN. Thus
the edge (u, v) can not exist and we deduce the
result.

Note that an interface is not necessarily in-
cluded entirely in the same slice, but can span
across several slices. Since the topology of a
slice does not vary over time, the size of the
backward interface, forward interface and a slice
remain constant, so we can write size(I→t) =
i→, size(I←t) = i← and size(Xt) = sslice.

X
0
0

X
0
1

X
0
2

X
1
1

X
1
2

X
1
0

X
2
0

X
2
1

X
2
2

Figure 2: Triangulation of a dBN using a
forward slice-by-slice elimination order where
I←t = {X0

t ,X
1
t }. The subgraph surrounded

in dashed line can be repeated to avoid re-
triangulated the dBN if its length changes.

3 Exact inference and complexity

In this work, we have studied the fixed interval

smoothing inference (or the offline inference),
since all other inferences are particular cases.
To perform this task, one can use two different
approaches. By considering the dBN either as
a stochastic process or as a Bayesian network
and applying inference algorithms that are de-
voted for the former or the latter. In this paper,
we consider the second approach and methods
based on triangulation. As stated previously,
the NP-hardness of finding optimal triangula-
tion implies the use of heuristic methods. In
the case of dBNs, a particular type of elimina-
tion order, called constrained elimination order,
is distinctively interesting. A constrained elim-
ination order is an elimination order such that
we impose the elimination of a set of nodes be-
fore an other. For example, a forward (resp.
backward) slice-by-slice elimination, denoted f-

ss (resp. b-ss), is a constrained elimination or-
der such that we eliminate a slice after an other
from the past to the future (resp. from the
future to the past) (see Figure 2). This kind
of elimination orders gives a theoretical upper
bound of the maximum clique size which is in-
dependent of the length of the dBN. Besides,
they give good experimental results and pro-
vide a way to avoid re-triangulating the dBN
for different length (Kjærulff, 1994; Bilmes and
Bartels, 2003; Murphy, 2002).

In Figure 2 the backward interfaces belongs
to a clique, this is a direct consequence of the
following theorem:

Lemma 1 (Rose et al. (1976)). Let X1, ...,Xn

be an elimination order triangulating an undi-

rected graph G, and let Xi and Xj two non-

neighbors nodes. Then the elimination order

add an edge (Xi,Xj) if and only if there exists a

path with endpoints Xi and Xj such that every

nodes on the path are eliminated before Xi and

Xj.

If we use a slice-by-slice elimination order
then we eliminate each node in slice t−1 before
the nodes in slice t. By definition, a backward
interface is the set of nodes that have neigh-
bors in slice t− 1 and if there is one connected
component per slice then for each pair of nodes
(u, v) in the backward interface there exists a
path with endpoints (u, v) where all nodes in
the path are in the previous slice. Hence, by
Lemma 1, (u, v) will be connected.

One can note that lemma 1 also implies that
the size of the maximum clique is at least as
large as the size of the backward interface. This
is the main drawback of using constrained elim-
ination order. For example, in Figure 2, the
treewidth is 2 whereas the constrained triangu-
lation gives a maximum clique of size 3. How-
ever, in practice, constrained elimination gives
good results and may be superior to uncon-
strained elimination (Darwiche, 2001). More-
over, we have the following upper bound guar-
antee on the maximum clique size:

Theorem 1 (Darwiche (2001)). Let a dBN of

length T , then m(f-ss) ≤ i←.sslice, m(b-ss) ≤
i→.sslice where m(σ) is the size of the maximum

clique obtained using the elimination order σ.

Thus an idea to improve this result is to find a
smaller interface and deduce a constrained elim-
ination order. To illustrate this, consider Fig-
ure 3: since I0 is an interface we can split the
dBN into two parts L0 and R0 that are respec-
tively the nodes in the left of I0 and the nodes
in its right. At each step, we eliminate nodes in
Li and slide Ii one time step further to get an
other interface Ii+1 and we repeat the process.
The final step consists in eliminating nodes in
I2 ∪ R2. This elimination order denoted min-

elim is then L0,L1 −L0,L2 −L1, I2 ∪R2. The
maximum clique dimension is then 2 which is

I2

L2 R2

I0

L0 R0

I1

L1 R1

Figure 3: Finding a constrained elimination or-
der given an interface I0.

better in comparison to the one in Figure 2.

This approach was followed by (Bilmes and
Bartels, 2003), where the authors proposed an
algorithm to find a smaller interface and an
other one to build an elimination order relying
on a more general model than the dBN called
”GMTK-template”. They show that the trian-
gulation quality can be dramatically better than
other constrained elimination.

Unfortunately, the algorithm that finds this
elimination order runs in exponential time and
needs to be parameterized. In the next sections,
we show that finding and building such elimina-
tion order can be done in polynomial time and
does not need any parameterization.

4 Minimum interface triangulation

In this section, we first prove that finding the
smallest possible interface can be done in poly-
nomial time. We then show how to build a
constrained elimination order with a theoretical
guarantee on the upper bound of the maximum
clique size.

4.1 Finding the minimum interface

The problem of finding a minimum interface in
a dBN of length T can be formally stated as:

• Minimum T -Interface

Instance : Moralized dBN GmT = (X0 ∪ ... ∪
XT , E) of length T .

Solution : An interface I ⊆ X0 ∪ ... ∪XT .

Measure : size(I)

We recall the both problems Minimum s-t Cut

and Minimum s-t Vertex Cut that are used
in our reduction:

• Minimum s-t Cut

Instance : Directed graph G = ({s, t}∪V,E),
a weight function w : E → R.

Solution : A subset E
′

⊆ E such that every
path from s to t contains an arc in E

′

.

Measure :
∑

e∈E
′ w(e).

• Minimum s-t Vertex Cut

Instance : Graph G = ({s, t}∪V,E), a weight
function w : V → N .

Solution : A subset V
′

⊆ V −{s, t} such that
every path from s to t contains a node in V

′

.

Measure :
∑

v∈V
′ w(e).

We state and prove the following theorem:

Theorem 2. Minimum T -Interface polyno-

mially reduces to Minimum s-t Cut and can be

then solved in polynomial time.

Proof. To prove this theorem, we use a composi-
tion of two polynomial transformations that are
stated and proved in the two following lemma.
We give for both lemma a sketch of proof since
the proof is trivial. We refer to Figure 4 for a
detailed transformation.

Lemma 2. Minimum T -Interface polynomi-

ally reduces to Minimum s-t Vertex Cut.

Proof. It is quite easy to see that an instance
I of Minimum T -Interface can be cast into
an instance I

′

of Minimum s-t Vertex Cut.
Indeed, it consists essentially of adding a source
and a sink to the dBN. Note that solutions of I
and I

′

are of equal size.

Lemma 3. Minimum s-t Vertex Cut poly-

nomially reduce to Minimum s-t Cut.

Proof. The transformation essentially consists
of splitting each node v ∈ V into two nodes
vi (in-node), vo (out-node) with an arc (vi, vo)
(arc-node) and a weight on this arc equal to the
weight of v. An edge (u, v) is replaced by two
arcs (uo, vi) and (vo, ui) with weights equal to
+∞. By construction, a solution of the former
problem is a solution of equal size to the sec-
ond problem by considering the corresponding
arc-node and vice versa.

By Lemma 2 and 3 the result follows.

In Figure 2, when the value of T increases
up to T = 2 the size of the minimum interface
decreases. Hence, it remains open the question

2+∞

+∞

+∞ +∞

+∞

+∞

+∞

+∞

2

2 2

Min T -Interface

X
1
1

X
1
0

X
1
1

X
1
0

X
0
0

X
0
1 X

0
0

X
0
1

s t

s

+∞

t

+∞

Min s-t-Vertex Cut

Min s-t-Cut

X
1
0o

X
1
0i

Figure 4: An example of a polynomial transfor-
mation from Minimum T -Interface to Mini-

mum s-t Cut. Variables are all binaries.

for which value of T we find the smallest inter-
face by resolving Minimum T -Interface. We
claim that this value is less or equal to the num-
ber of nodes in a slice. Let I(t) an optimal solu-
tion of Minimum T -Interface with T = t, we
first prove the following lemma:

Lemma 4. For all a, b ≥ 0 such that a ≥ b,

size(I(a)) ≤ size(I(b))

Proof. For a dBN of length a, every path from a
node of X0 to a node of Xb contains, by defini-
tion, a node in I(b). Moreover, every path from
a node of X0 to a node of Xa contains a node
in Xb and then a node in I(b). Hence, I(b) is
also an interface for the dBN of length a which
implies size(I(a)) ≤ size(I(b)).

The following proposition give a first charac-
terization of the optimal value for T :

Proposition 2. Let t∗ be the time such that:

t∗ = min
t
{t ∈ N : size(I(t)) = size(I(t+1))}

Then for all t ≥ 0, we have that:

size(I(t
∗)) ≤ size(I(t))

Proof. By theorem 2, finding the minimum in-
terface in a moralized dBN of length T GmT
can be viewed as maximizing a flow in the

directed graph Gm
′

T obtained from GmT by ap-
plying the polynomial transformation given in
the proof. Let αt the value of the maximum

flow in the graph Gm
′

t , by the max-flow min-
cut theorem and since optimal solution of the
two problems are of the same size, we can write
size(I(t)) = size(I(t+1)) = αt = αt+1. Hence, in

the slice t of Gm
′

t+1 the value of the flow is main-
tained to the slice t + 1. Since the topology
of a dBN does not vary over time, if we could
preserve a flow of value αt from slice t to slice
t+1, then we could preserve the flow from slice
t + 1 to slice t + 2. Moreover, the value of the
flow can not increase to a value αt+2 > αt by
lemma 4. By inductively applying these argu-
ments, we have αt ≤ α

t
′ for all t

′

> 0 and thus

size(I(t)) ≤ size(I(t
′

)) for all t
′

> 0.

We can now give an upper bound of the op-
timal value of T :

Proposition 3. Let a dBN with h nodes per

slices, then for all t ≥ 0, size(I(2h−1)) ≤ I(t).

Proof. By lemma 4, if t ≤ 2h − 1 then
size(I(2h−1)) ≤ size(I(t)). Assume t > 2h − 1
and size(I(2h−1)) > I(t). By proposition 2, we
must have size(X0) = size(I(0)) > size(I(1)) >
... > size(I(2h−1)) > size(I(t)). Hence, let
i ∈ {0, ..., 2h − 1}, either we reduce the size of
I(i) to get I(i+1) by removing a node or by re-
placing a node with another one of lower size.
We can remove at most h nodes, and replac-
ing at most h− 1 nodes, thus size(I(2h−1)) = 0
and size(I(t)) = 0 which leads to a contradic-
tion.

Using propositions 3 and 2, and the theorem
2, we deduce the Min-Interface algorithm (see
Figure 5) that finds the smallest interface in
polynomial time.

4.2 Building the elimination order

Once we have the interface I0 found by
Min-Interface, the next step is to build the
constrained elimination order. To do this, con-
sider the sets Ii = {Xk

t+i : Xk
t ∈ I0} for

i = 1, ..., n of a dBN of length T . Each Ii is
obtained by sliding I0 by i time step. As previ-
ously discussed in section 3, since Ii is straight-
forwardly an interface, we can split the dBN
into two parts Li and Ri where Li is the set of
nodes in the left of Ii and Ri the set of nodes
in its right. We then define the following elimi-
nation order:

min-elim = L0,L1 −L0, ...,Ln −Ln−1, In ∪Rn

Require: A 2-TBN.
Ensure: A minimum interface

prevSize ← +∞
I← X0.
T ← 1
while T < 2h− 1 do

prevSize ← size(I)
GT ← Unroll the 2-TBN T time steps
GmT ← moralize(GT)
Solve Min T -Interface with GmT to get I
if size(I) = prevSize then

return I

end if

T ← T + 1
end while

return I.

Figure 5: Pseudo-code of the Min-Interface

algorithm. Its polynomial time complexity is
ensure by the O(h) iterations and by the theo-
rem 2.

Note that we do not impose any constraints in
the elimination order of nodes in each Li−Li−1,
L0 and In∪Rn. In our experiments, we used the
min-fill heuristic but other approaches can be
considered. We now give an upper bound of the
maximum clique size if we apply the elimination
sequence min-elim.

Proposition 4. For all i > 0, when elimi-

nating nodes in Li − Li−1, we create a clique

of size at most size(Ii).sslice where size(Ii) ≤
min(i→, i←).

Proof. To get Li from Li−1 it suffices to add
nodes Xk

t such that Xk
t−1 ∈ Li−1 or t = 0.

Then we have Li − Li−1 = {X0
t1
, ...,Xn

tn
} and

thus size(Li − Li−1) = size({X0
t1
, ...,Xn

tn
}) =

sslice. When eliminating nodes in Li − Li−1,
the set of involved nodes are (Li − Li−1) ∪ Ii
(since Ii is an interface) then the size of the
created clique is less or equal to size(Li −
Li−1).size(Ii) = size(Ii).sslice. Finally, by
proposition 1 and the optimality of Ii, we have
size(Ii) ≤ min(i→, i←).

Remark. The previous proposition is a ”local”
improvement of theorem 1. It is ”local” be-

cause when we eliminate nodes in L0 or in
In ∪Rn the created clique could be larger than
size(Ii).sslice, but (1) this concerns a fix frac-
tion of the dBN and thus the average size of
the cliques in the triangulated dBN converge to
size(Ii).sslice when T → +∞ (2) we could use
the b-ss (or the f-ss) elimination order to have
a guarantee on the size of the maximum clique
when eliminating nodes in these sets.

5 Experiments

In this section we present triangulation re-
sults on classical dBNs and random dBNs using
methods based on (Ide and Cozman, 2002). To
perform these tests, we used the C++ aGrUM
library (http://agrum.lip6.fr).

b-ss f-ss Min-Elim

Fig. 3.3 of Mean 3.16 3.03 3.03

Murphy (2002) Bounds 0.69–3.46 0.69–3.46 0.69–3.46
Fig. 3.2 of Mean 5.54 5.54 5.54

Murphy (2002) Bounds 5.54–5.54 5.54–5.54 5.54–5.54
Fig. 3-D of Mean 1.38 3.00 1.38

Bilmes (2003) Bounds 1.39–1.39 1.39–3.46 1.39–1.39
Fig. 2 of Mean 2.07 3.45 2.07

Darwiche (2001) Bounds 1.39–2.08 1.39–3.46 1.39–2.08
Fig. 6 of Mean 3.46 3.23 3.00

Bilmes (2003) Bounds 2.08–4.16 2.08–3.46 2.08–3.46

Figure 6: Results on real dBNs.

Figure 6 shows results for classical dBNs.
Each row represents a dBN and each column
corresponds to an elimination order used for tri-
angulation. Each dBN is unrolled up to T = 500
time steps. We report the mean size of the
cliques in the triangulated dBN and the min-
imum and the maximum clique. We see that
our method always gives triangulated dBN that
have the minimum mean size of cliques and for
the last dBN it is the only one that gives the
best mean size.

Figure 7 shows results for randomly gener-
ated dBN. Each dBN contains 5 ((a) and (b)),
10 ((c) and (d)) or 15 ((e) and (f)) variables per
slices with random variable cardinalities chosen
uniformly between 2 and 8. All dBNs are un-
rolled up to T = 500 time steps. In figure 7 (a),
(c) and (e), for each generated dBN we compute
the mean size of the cliques x, y1 and y2 in the
triangulated dBN using respectively min-elim,
f-ss and b-ss, then we plot the point (x, y1) as
”×” and the point (x, y2) as ”◦”. We report in

Mean clique size

b
-s
s
/
f-
ss

2

4

6

8

10

12

min-elim

2 4 6 8 10 12

 b-ss

 f-ss

(a)

b
-s
s
/
f-
ss

5

10

15

20

min-elim

5 10 15 20

 b-ss

 f-ss

(c)

b
-s
s
/
f-
ss

10

15

20

25

min-elim

10 15 20 25

 b-ss

 f-ss

(e)

Interface size

B
a
c
k
w
a
rd
 /
 F
o
r
w
a
rd
 i
n
te
rf
a
c
e
 s
iz
e

2

4

6

8

10

12

Minimum interface size

2 4 6 8 10 12

 Forward

 Backward

(b)

B
a
c
k
w
a
rd
 /
 F
o
r
w
a
rd
 i
n
te
rf
a
c
e
 s
iz
e

5

10

15

20

Minimum interface size

5 10 15 20

 Forward

 Backward

(d)

B
a
c
k
w
a
rd
 /
 F
o
r
w
a
rd
 i
n
te
rf
a
c
e
 s
iz
e

10

15

20

25

Minimum interface size

10 15 20 25

 Forward

 Backward

(f)

Figure 7: Results on random generated dBNs.

figure 7 (b), (d) and (f) the size of the back-
ward, forward and minimum interface in the
same way. Every points above the first diagonal
shows an improvement thanks to our algorithm.
As we can see, our constrained elimination or-
der improve the triangulation quality for almost
all generated dBNs.

%
 o
f
d
B
N
s

0

10

20

30

40

50

Width of the Interface

0 1 2 3 4 5 6 7 8

Figure 8: Minimum interfaces often span across
many slices.

Figure 8 shows the percent of dBNs given the
width of the minimum interface, i.e. the number
of slices the interface spans across. This shows
that allowing the interface to span across many
slices is a useful approach.

6 Conclusion

In this paper, we studied the problem of find-
ing good quality constrained elimination order
for triangulating a dBN. We propose a polyno-
mial algorithm to compute such order using the
concept of interface in a dBN. We first show
that an interface is equivalent to a cut-set in a
graph, which allows us to find the minimum in-
terface in polynomial time and then to construct
a constrained elimination that have a theoreti-
cal guarantee on the maximum clique size in the
triangulated graph. Experimental results show
that our approach of using a polynomial time
pre-treatment allows to increase the quality of
the triangulation.

In future work, we plan to use this ap-
proach with approximate inference algorithms,
e.g. loopy belief propagation, factored frontier
algorithm (Murphy and Weiss, 2001), in which
we could take advantage of using a small inter-
face.

Acknowledgments

This research was supported by the ANR
SKOOB project (http://skoob.lip6.fr).

References

Stefan Arnborg, Derek G. Corneil, and Andrzej
Proskurowski. 1987. Complexity of finding em-
beddings in a k-tree. SIAM Journal on Algebraic
and Discrete Methods, 8(2):277–284.

Cédric Baudrit, Mariette Sicard, Pierre-Henri
Wuillemin, and Nathalie Perrot. 2009. Dynamic
bayesian networks for modelling food processing:
Application to the cheese ripening process. In
8th World Congress of Chemichal Engineering 09,
Montréal (Canada).

Jeff Bilmes and Chris Bartels. 2003. On Triangulat-
ing Dynamic Graphical Models. In Uncertainty
in Artificial Intelligence, pages 47–56, Acapulco,
Mexico.

Gregory F. Cooper. 1990. The computational com-
plexity of probabilistic inference using Bayesian
belief networks. Artificial Intelligence, 42(2-
3):393–405.

Adnan Darwiche. 2001. Constant-space reason-
ing in dynamic Bayesian networks. International
Journal of Approximate Reasoning, 26:161–178.

Thomas Dean and Keiji Kanazawa. 1990. A model
for reasoning about persistence and causation.
Computational Intelligence, 5(3):142–150.

Dieter Fox, Wolfram Burgard, and Sebastian Thrun.
1999. Markov Localization for Mobile Robots in
Dynamic Environments. Journal of Artificial In-
telligence Research, 11:391–427.

Pinar Heggernes. 2006. Minimal triangulations
of graphs: A survey. Discrete Mathematics,
306(3):297–317.

Jaime S. Ide and Fabio G. Cozman. 2002. Random
Generation of Bayesian Networks. In Brazilian
Symposium on Artificial Intelligence, pages 366–
375. Springer-Verlag.

Finn V. Jensen, Steffen L. Lauritzen, and Kris-
tian G. Olesen. 1990. Bayesian updating in
causal probabilistic networks by local computa-
tions. Computational Statistics Quaterly, 4:269–
282.

Uffe Kjærulff. 1994. dHugin: A computational sys-
tem for dynamic time-sliced Bayesian networks.
International Journal of Forecasting, 11:89–111.

Kevin Murphy and Yair Weiss. 2001. The Factored
Frontier Algorithm for Approximate Inference in
DBNs. In Uncertainty in Artificial Intelligence,
pages 378–385, Seattle, WA.

Kevin Murphy. 2002. Dynamic Bayesian Networks:
Representation, Inference and Learning. Ph.D.
thesis, University of California.

Judea Pearl. 1988. Probabilistic Reasoning in Intel-
ligent Systems: Networks of Plausible Inference.
Morgan Kaufmann.

Donald J. Rose, Endre Tarjan, and Robert George S.
Lueker. 1976. Algorithmic Aspects of Vertex
Elimination on Graphs. SIAM Journal on Com-
puting, 5(2):266–283.

Philippe Weber. 2002. Dynamic bayesian networks
model to estimate process availability. In 8th In-
ternational Conference Quality, Reliability, Main-
tenance, Sinaia (Romania).

Geoffrey Zweig. 1996. A Forward-Backward Algo-
rithm for Inference in Bayesian Networks and An
Empirical Comparison with HMMs. Master’s the-
sis, University of California.

