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Abstract

A method for calculating some profile likelihood inferences in probabilistic graphical mod-
els is presented and applied to the problem of classification. It can also be interpreted as
a method for obtaining inferences from hierarchical networks, a kind of imprecise proba-
bilistic graphical models.

1 Introduction

The main result of the present paper is a
method for calculating profile likelihood func-
tions for an important class of probabilistic in-
ferences, when the probabilities of a Bayesian
network are learned from data. This result can
also be interpreted as a method for obtaining
inferences from hierarchical networks, which are
networks with imprecisely known probabilities.

Likelihood-based inference is briefly outlined
in the next section, while Section 3 contains the
main result, stated in Theorem 1 (whose proof
will be given in an extended version of the pa-
per). Section 4 presents an application of this
result to the problem of classification.

2 Likelihood

Let Pθ be a parametric probabilistic model for
some discrete random variables X,Y, . . ., where
θ P Θ is the parameter (vector) and Θ is the
parameter space. The observation of a realiza-
tion X � x induces the (normalized) likelihood
function lik on Θ defined by

likpθq �
PθpX � xq

supθ1PΘ Pθ1pX � xq

for all θ P Θ. Moreover, when X � x is ob-
served, the model Pθ is updated into the condi-
tional model Pθp � |X � xq.

The inference about the value gpθq of a func-
tion g : Θ Ñ G (where G can be any set) can

be based on the (normalized) profile likelihood
function likg on G defined by

likgpγq � sup
θPΘ : gpθq�γ

likpθq

for all γ P G, where sup∅ is interpreted as 0.
In particular, if there is a unique γ P G such
that likgpγq � 1, then γ is the maximum like-
lihood estimate of gpθq. More generally, the
likelihood-based confidence region for gpθq with
cutoff point β P r0, 1r is the set

tγ P G : likgpγq ¡ βu ,

whose confidence level can often be approxi-
mated thanks to the result of (Wilks, 1938).
These are the usual likelihood-based point es-
timates and set estimates; more general ways of
basing inferences and decisions directly on the
likelihood function are discussed in (Cattaneo,
2007).

Example 1. Let X1, . . . , X10 be 10 categorical
variables taking values in the set ta, b, cu. The
assumption that X1, . . . , X10 are independent
and identically distributed leads to a parametric
probabilistic model Pθ with PθpXi � ωq � θω,
where the parameter θ � pθa, θb, θcq is an ele-
ment of the standard 2-dimensional simplex

Θ �
 
pθa, θb, θcq P r0, 1s

3 : θa � θb � θc � 1q
(
.

Assume that the realizations of X1, . . . , X9 are
observed, and the values a, b, and c appear 2,
4, and 3 times, respectively. This observation



induces the (normalized) multinomial likelihood
function lik on Θ defined by

likpθq � 14348907
1024 θ2a θ

4
b θ

3
c

for all θ P Θ. The inference about the probabil-
ity that the realization of X10 will be either a or
b can be based on the profile likelihood function
likg on r0, 1s, with g : Θ Ñ r0, 1s defined by

gpθq � Pθ pX10 P ta, buq � θa � θb

for all θ P Θ (note that conditioning Pθ on the
observed realizations of X1, . . . , X9 has no in-
fluence on the probability distribution of X10).
Since the (normalized) profile likelihood func-
tion likg on r0, 1s satisfies

likgpγq �
19683
64 γ6 p1� γq3

for all γ P r0, 1s, the maximum likelihood esti-
mate of Pθ pX10 P ta, buq is pγ � 2

3 , while for in-
stance r0.35, 0.90s is an approximate 95% confi-
dence interval for Pθ pX10 P ta, buq, since it cor-
responds approximately to the likelihood-based
confidence region with cutoff point β � 0.15.

2.1 Hierarchical model

The parametric probabilistic model and the
likelihood function can be considered as the two
levels of a hierarchical model, in which the likeli-
hood function describes the relative plausibility
of the parameter values. As noted above, when
X � x is observed, the set tPθ : θ P Θu is up-
dated by conditioning each element Pθ on the
observed event: this corresponds to the updat-
ing of the imprecise Bayesian model studied in
(Walley, 1991). Hence, the hierarchical model
generalizes the imprecise Bayesian model, in the
sense that the second level (that is, the likeli-
hood function) describes additional information
about the relative plausibility of the elements of
tPθ : θ P Θu.

This additional information allows fundamen-
tal advantages of the hierarchical model over the
imprecise Bayesian model, such as the possibil-
ity of starting without prior information and the
increased robustness of the conclusions: see for
example (Cattaneo, 2009). Moreover, since the

membership functions of fuzzy sets are often in-
terpreted as likelihood functions (the extension
principle of possibility theory corresponds then
to the use of profile likelihood functions), the
hierarchical model can handle fuzzy data and
possibilistic information or variables in a unified
and well-founded way: see for instance (Catta-
neo, 2008).

3 Networks

When X is a categorical variable, let ΩX de-
note the set of all possible realizations of X.
Moreover, let FX denote the set of all possible
real functions on ΩX , and let SX denote the
set of all possible probability distributions on
ΩX . Hence, SX � FX , and SX can be iden-
tified with the standard simplex of dimension
|ΩX | � 1, where |ΩX | denotes the cardinality of
ΩX . Moreover, let 0X denote the function on
ΩX with constant value 0 (therefore, 0X P FX ,
but 0X R SX). Finally, if f P FX with fpxq ¥ 0
for all x P ΩX , then let xfy denote the probabil-
ity distribution on ΩX proportional to f when
f � 0X , and the uniform probability distribu-
tion on ΩX when f � 0X . That is, xfy P SX ,
and for all x P ΩX ,

xfypxq �

#
fpxq°

x1PΩX
fpx1q if

°
x1PΩX

fpx1q ¡ 0,
1

|ΩX | if
°

x1PΩX
fpx1q � 0.

LetX1, . . . , Xk be k categorical variables such
that |ΩXi | ¥ 2 for all i P t1, . . . , ku. Assump-
tions about conditional independencies among
the variables X1, . . . , Xk can be encoded in a di-
rected acyclic graph G with nodes X1, . . . , Xk:
see for example (Jensen and Nielsen, 2007). Let
Πi denote the joint variable composed of all
parents of Xi according to G, where Πi is as-
sumed to be constant when Xi has no parents.
The other component of a Bayesian network,
besides the graph G, are the probability distri-
butions of Xi conditional on Πi � πi, for each
i P t1, . . . , ku and each πi P ΩΠi . Altogether,
these conditional probability distributions can
be described by the parameter θ P ΘG, where

ΘG �
k¡

i�1

¡
πiPΩΠi

SXi



is a Cartesian product of the simplexes SXi . For
each θ P ΘG, let θXi|πi

denote the correspond-
ing probability distribution of Xi conditional on
Πi � πi (hence, θXi|πi

P SXi). The Bayesian
network described by the graph G and the pa-
rameter θ P ΘG determines the joint probability
distribution Pθ on ΩX1 � � � � � ΩXk

defined by

Pθpx1, . . . , xkq �
k¹

i�1

θXi|πi
pxiq

for all px1, . . . , xkq P ΩX1 � � � � � ΩXk
, where πi

are the corresponding realizations of the joint
variables Πi.

To allow uncertainty about the involved prob-
ability values, Bayesian networks have been gen-
eralized to credal networks, which can be de-
scribed by a directed acyclic graph G and a
set Θ � ΘG of parameters: see for instance
(Antonucci and Zaffalon, 2008). A credal net-
work determines an imprecise Bayesian model
tPθ : θ P Θu, instead of a single probability
distribution Pθ. That is, a credal network cor-
responds mathematically to a set of Bayesian
networks with the same graph G. A credal net-
work is said to be separately specified if

Θ �
k¡

i�1

¡
πiPΩΠi

ΘXi|πi
(1)

is the Cartesian product of the sets ΘXi|πi
, with

ΘXi|πi
� SXi for all i P t1, . . . , ku and all

πi P ΩΠi . That is, a separately specified credal
network consists of all Bayesian networks with
graph G and probability distributions ofXi con-
ditional on Πi � πi freely selected from the sets
ΘXi|πi

(note that only the so-called strong ex-
tension of a separately specified credal network
is considered in the present paper).

To allow additional information about the rel-
ative plausibility of the involved probability val-
ues, credal networks have been generalized to
hierarchical networks, which can be described
by a directed acyclic graph G, a set Θ � ΘG

of parameters, and a (normalized) likelihood
function lik on Θ: see for example (Cattaneo,
2009). A hierarchical network determines a hi-
erarchical model with as first level the impre-
cise Bayesian model tPθ : θ P Θu, and as second

level the likelihood function lik on Θ, describ-
ing the relative plausibility of the elements of
tPθ : θ P Θu. That is, a hierarchical network
corresponds mathematically to a set of Bayesian
networks with the same graph G but in general
with different degrees of plausibility. A hierar-
chical network is said to be separately specified
if Θ satisfies (1), and lik is the product of the
local likelihood functions likXi|πi

on ΘXi|πi
, in

the sense that

likpθq �
k¹

i�1

¹
πiPΩΠi

likXi|πi
pθXi|πi

q

for all θ P Θ, with ΘXi|πi
� SXi and likXi|πi

:
ΘXi|πi

Ñ r0, 1s for all i P t1, . . . , ku and all
πi P ΩΠi . That is, the separately specified
hierarchical networks generalize the separately
specified credal networks by adding information
about the relative plausibility of the elements of
the sets ΘXi|πi

.

3.1 Learning probabilities from data

Learning networks from data is a fundamental
problem. In the present paper, only the simplest
case is considered: the directed acyclic graph G
is assumed known, and the dataset is complete.
That is, the dataset consists of n realizations
of the joint variable X � pX1, . . . , Xkq. For
each i P t1, . . . , ku and each πi P ΩΠi , let nXi|πi

denote the function on ΩXi assigning to each
xi P ΩXi the number of realizations of the joint
variable X such that Xi � xi and Πi � πi.
Hence, nXi|πi

P FXi , and for all i P t1, . . . , ku,¸
πiPΩΠi

¸
xiPΩXi

nXi|πi
pxiq � n. (2)

When the n realizations of the joint variable
X are considered independent and identically
distributed according to the joint probability
distribution Pθ with θ P ΘG, they induce the
(normalized) likelihood function lik on ΘG de-
fined by

likpθq �
k¹

i�1

¹
πiPΩΠi

¹
xiPΩXi

�
θXi|πi

pxiq
�nXi|πi

pxiq�
xnXi|πi

ypxiq
�nXi|πi

pxiq



for all θ P ΘG, where 00 is interpreted as
1. The denominators of the fractions normal-
ize the likelihood function, since lik is max-
imized by the parameter pθ P ΘG such thatpθXi|πi

� xnXi|πi
y for all i P t1, . . . , ku and all

πi P ΩΠi . However, pθ is the unique parame-
ter maximizing lik only if nXi|πi

� 0Xi for all
i P t1, . . . , ku and all πi P ΩΠi (that is, only if
all possible realizations Πi � πi appear at least
once in the dataset).
Hence, the likelihood function lik on ΘG fac-

torizes in the local likelihood functions likXi|πi

on SXi defined by

likXi|πi
pθXi|πi

q �
¹

xiPΩXi

�
θXi|πi

pxiq
�nXi|πi

pxiq�
xnXi|πi

ypxiq
�nXi|πi

pxiq

for all θXi|πi
P SXi . Estimates of the conditional

probability distributions θXi|πi
can easily be

based on the multinomial likelihood functions
likXi|πi

: if nXi|πi
� 0, then pθXi|πi

� xnXi|πi
y is

the maximum likelihood estimate; alternatively,
likXi|πi

can be combined with a prior proba-
bility distribution on SXi (usually a Dirichlet
distribution) to obtain a Bayesian estimate of
θXi|πi

. However, the Bayesian network corre-
sponding to the estimated conditional probabil-
ity distributions does not contain any informa-
tion about the uncertainty of those estimates,
and consequently it does not contain any infor-
mation about the uncertainty of the resulting
probabilistic inferences.
To include some information about the un-

certainty of the conditional probability distri-
butions and of the resulting probabilistic infer-
ences, set estimates ΘXi|πi

� SXi of the con-
ditional probability distributions θXi|πi

can be
based on the local likelihood functions likXi|πi

(instead of point estimates θXi|πi
P SXi). The

set estimates ΘXi|πi
determine a separately

specified credal network, and inferences can
then be based on the corresponding imprecise
Bayesian model. The usual way of obtaining an
imprecise probability distribution ΘXi|πi

from
a multinomial likelihood function likXi|πi

is by
combining it with a set of prior Dirichlet distri-
butions, called imprecise Dirichlet model: see
for example (Walley, 1996). But the confidence

level of the set estimates ΘXi|πi
obtained from

the imprecise Dirichlet model can be arbitrar-
ily low (for sufficiently large n: compare with
Example 2): see for instance Wilson’s comment
in the discussion of (Walley, 1996). To avoid
this problem, the sets ΘXi|πi

� SXi could be es-
timated as likelihood-based confidence regions
for θXi|πi

, according to the multinomial likeli-
hood functions likXi|πi

, but in general the clo-
sure of the resulting set estimates ΘXi|πi

would
be convex with infinitely many extreme points
when |ΩXi | ¥ 3, and this would lead to compu-
tational difficulties.
Instead of reducing them to likelihood-based

confidence regions ΘXi|πi
, it is better to main-

tain the whole likelihood functions likXi|πi
as

descriptions of the uncertainty about the con-
ditional probability distributions θXi|πi

. The
likelihood function lik on ΘG describes then
the uncertainty about the whole Bayesian net-
work (given the graph G), and corresponds to
a separately specified hierarchical network with
Θ � ΘG. Learning hierarchical networks from
data is straightforward (when the graph G is
assumed known), and no estimates or prior dis-
tributions are necessary, but in general the cal-
culation of profile likelihood functions (on which
inferences and decisions are based) is not so
simple. However, the following theorem shows
that for particular classes of functions g on Θ,
obtaining the profile likelihood function likg is
straightforward too.

Theorem 1. For each i P t1, . . . , ku and
each πi P ΩΠi, let dXi|πi

, qXi|πi
P FXi with

dXi|πi
pxiq ¥ 0 for all xi P ΩXi. Moreover, let

lik : ΘG Ñ r0, 1s and g : ΘG Ñ r0,�8s be
defined by

likpθq �
k¹

i�1

¹
πiPΩΠi

¹
xiPΩXi

�
θXi|πi

pxiq
�dXi|πi

pxiq�
xdXi|πi

ypxiq
�dXi|πi

pxiq

and

gpθq �
k¹

i�1

¹
πiPΩΠi

¹
xiPΩXi

�
θXi|πi

pxiq
�qXi|πi

pxiq ,

respectively, for all θ P ΘG, where 00 is inter-
preted as 1, and 0x is interpreted as �8 for all



negative x (but gpθq is undefined when both 0
and �8 appear in the same product). Finally,
let α and α be the infimum and the supremum,
respectively, of the set 

α P R : pdXi|πi
� α qXi|πi

qpxiq ¥ 0 @ i, πi, xi
(

(linear combinations of functions are to be in-
terpreted pointwise).

• If α � α � 0, then likgpγq � 1 for all
γ P r0,�8s.

• Otherwise, define θ, θrαs, θ P ΘG as fol-
lows:

θXi|πi
�

$''''''''''''''&''''''''''''''%

xdXi|πi
� α qXi|πi

y if α � �8

and dXi|πi
� α qXi|πi

� 0Xi,

xqXi|πi
y if α � �8

and dXi|πi
� α qXi|πi

� 0Xi,

x�qXi|πi
y if α � �8

and qXi|πi
� 0Xi,

xdXi|πi
y if α � �8

and qXi|πi
� 0Xi,

θrαsXi|πi
� xdXi|πi

� α qXi|πi
y,

θXi|πi
�

$''''''''''''''&''''''''''''''%

xdXi|πi
� α qXi|πi

y if α � �8

and dXi|πi
� α qXi|πi

� 0Xi,

x�qXi|πi
y if α � �8

and dXi|πi
� α qXi|πi

� 0Xi,

xqXi|πi
y if α � �8

and qXi|πi
� 0Xi,

xdXi|πi
y if α � �8

and qXi|πi
� 0Xi,

respectively, for all α P sα, αr , all i P
t1, . . . , ku, and all πi P ΩΠi.

Then likgpgpθqq � likpθq and likgpgpθqq �
likpθq.

If gpθq ¡ 0, then for all γ P r0, gpθqr ,

likgpγq �

# �
γ

gpθq

	�α
likpθq if α � �8,

0 if α � �8.

If gpθq   gpθq, then the graph of the restric-
tion of likg to sgpθq, gpθqr is the set

tpgpθrαsq, likpθrαsqq : α P sα, αr u ,

and gpθrαsq is a continuous, strictly in-
creasing function of α P sα, αr .

If gpθq   �8, then for all γ P sgpθq,�8s,

likgpγq �

# �
γ

gpθq

	�α
likpθq if α � �8,

0 if α � �8.

The likelihood function lik of Theorem 1 gen-
eralizes the likelihood function on ΘG induced
by a complete dataset, for which the functions
dXi|πi

� nXi|πi
can take only integer values

and must satisfy conditions such as (2). The
function g of Theorem 1 can for example de-
scribe the probability of a particular realization
px1, . . . , xkq P ΩX1 � � � � �ΩXk

of the joint vari-
able X � pX1, . . . , Xkq; that is,

gpθq � PθpX1 � x1, . . . , Xk � xkq

for all θ P ΘG. In this case, qXi|πi
� nXi|πi

for the particular dataset consisting of the sin-
gle realization px1, . . . , xkq of the joint vari-
able X. If the functions n1

Xi|πi
describe a sec-

ond dataset consisting of the single realization
px11, x2, . . . , xkq of the joint variable X, then the
function g with qXi|πi

� nXi|πi
� n1

Xi|πi
satisfies

gpθq �
PθpX1 � x1 |X2 � x2, . . . , Xk � xkq

PθpX1 � x11 |X2 � x2, . . . , Xk � xkq

for all θ P ΘG such that the right-hand side
is well-defined. That is, g describes the proba-
bility ratio of the possible realizations x1 and
x11 of X1 conditional on the realizations of
X2, . . . , Xk. In the next section, Theorem 1
with this kind of function g is used in the prob-
lem of classification: the goal is to determine
the realization of X1 given the realizations of
X2, . . . , Xk.
The formulation of Theorem 1 is rather com-

plex, because several special cases must be con-
sidered, but the central part of the theorem is
pretty simple: it is the parametric expression
for the graph of the profile likelihood function
likg restricted to the interval sgpθq, gpθqr . For
example, in the problem of classification stud-
ied in the next section, it suffices to consider
this central part, since sgpθq, gpθqr� s0,�8r .



The idea behind the parametric expression of
the graph of likg is the following: if θrαs maxi-
mizes pgpθqqα likpθq over all θ P ΘG for some
α P R, then θrαs maximizes likpθq over all
θ P ΘG such that gpθq � gpθrαsq, and there-
fore likgpgpθrαsqq � likpθrαsq. For the partic-
ular classes of functions lik and g considered
in Theorem 1, finding the parameter θrαs max-
imizing pgpθqqα likpθq over all θ P ΘG is ex-
tremely simple. For more general classes of
functions lik and g, the above idea can be com-
bined with approximation algorithms for maxi-
mizing pgpθqqα likpθq, such as the EM algorithm
of (Dempster et al., 1977), but this goes beyond
the scope of the present paper.

4 Naive classifiers

Let C,F1, . . . , Fk�1 be k categorical variables.
The variables F1, . . . , Fk�1 describe k � 1 fea-
tures of an object, while C is the variable of
interest: it describes the object’s class. Hav-
ing observed m features of an object, say F1 �
f1, . . . , Fm � fm, with m P t0, . . . , k � 1u, the
goal is to classify it; that is, to predict the real-
ization of C. The problem is particularly sim-
ple if the features F1, . . . , Fk�1 are assumed to
be conditionally independent given the class C.
This assumption can be encoded in the directed
acyclic graph GN with nodes C,F1, . . . , Fk�1

such that C has no parents and is the only par-
ent of F1, . . . , Fk�1.

The Bayesian network described by the graph
GN and a parameter θ P ΘGN

is called naive
Bayes classifier (NBC): such classifiers were pro-
posed in (Duda and Hart, 1973). For each pair
of different classes a, b P ΩC , let ga,b : ΘGN

Ñ
r0,�8s be defined by

ga,bpθq �
PθpC � a, F1 � f1, . . . , Fm � fmq

PθpC � b, F1 � f1, . . . , Fm � fmq

for all θ P ΘG, where
x
0 is interpreted as �8 for

all positive x, and as 1 when x � 0. A strict
partial preference order ¡ on ΩC is obtained by
considering the values ga,bpθq, for the parameter
θ of the Bayesian network and all pairs of differ-
ent classes a, b P ΩC : if ga,bpθq ¡ 1, then a ¡ b
(that is, a is preferred to b), while if ga,bpθq   1,

then b ¡ a; finally, if ga,bpθq � 1, then there is
no preference between a and b. The NBC re-
turns as prediction of C the maximal elements
of ΩC according to ¡ (that is, the c P ΩC such
that there is no c1 P ΩC with c1 ¡ c). Usu-
ally the prediction consists of a single class, but
sometimes it can consist of several classes (with
no preference among them). The parameter θ
of the Bayesian network can be estimated from
training data (for example by maximum like-
lihood estimation: see Subsection 3.1), but the
resulting NBC does not contain any information
about the uncertainty of the estimate θ and of
the inferred values ga,bpθq.

The credal network described by the graph
GN and a set Θ � ΘGN

of parameters is called
naive credal classifier (NCC): such classifiers
were proposed in (Zaffalon, 2002). A strict par-
tial preference order ¡ on ΩC (called credal
dominance) is obtained by considering the val-
ues ga,bpθq, for all parameters θ P Θ and all pairs
of different classes a, b P ΩC : there is a prefer-
ence between a and b only if either ga,bpθq ¡ 1
for all θ P Θ (in which case a ¡ b), or ga,bpθq   1
for all θ P Θ (in which case b ¡ a). The NCC
returns as prediction of C the maximal elements
of ΩC according to ¡; hence, the prediction of-
ten consists of more than one class. The set Θ
of parameters can be estimated from training
data (for example on the basis of the imprecise
Dirichlet model: see Subsection 3.1): the result-
ing NCC contains some information about the
uncertainty of the inferred values ga,bpθq, and
the number of classes returned as prediction of
C depends on the amount of uncertainty (the
more uncertainty, the more classes).

The hierarchical network described by the
graph GN and a (normalized) likelihood func-
tion lik on ΘGN

can be called naive hierarchical
classifier (NHC). For each β P r0, 1r , a strict
partial preference order ¡β on ΩC is obtained
by considering the profile likelihood functions
likga,b on r0,�8s, for all pairs of different classes
a, b P ΩC : there is a preference between a and
b only if either likga,bpγq ¤ β for all γ P r0, 1s
(in which case a ¡β b), or likga,bpγq ¤ β for all
γ P r1,�8s (in which case b ¡β a). The NHC
returns as prediction of C with cutoff point β



the maximal elements of ΩC according to ¡β.
Hence, the prediction can consist of one or more
classes, and the number of classes increases as
β decreases, in the sense that additional classes
can be included in the prediction as β decreases.
The likelihood function lik on ΘGN

can be in-
duced by training data, and when lik satisfies
the condition of Theorem 1, the profile likeli-
hood functions likga,b are easily obtained. In
order to satisfy that condition, it is not neces-
sary for the training dataset to be complete (the
features of the objects in the dataset need not be
observed), but when it is complete, Theorem 1
implies the following simple result.

Corollary 1. Let a, b P ΩC be two differ-
ent classes, and for both c P ta, bu and each
i P t1, . . . ,mu, let nc and nc,i be the numbers
of objects in the complete training dataset with
C � c, and with C � c and Fi � fi, respectively.
Moreover, define

α � �mintna, na,1, . . . , na,mu

and

α � mintnb, nb,1, . . . , nb,mu.

• If α � α � 0, then likga,bpγq � 1 for all
γ P r0,�8s.

• Otherwise, let xa,b, ya, yb : rα, αs Ñ r0,�8s
be defined by

xa,bpαq �
na � α

nb � α

m¹
i�1

�
na,i � α

na � α

nb � α

nb,i � α



,

yapαq �
pna � αqna

na
na

m¹
i�1

na
na pna,i � αqna,i

na,i
na,i pna � αqna

,

ybpαq �
pnb � αqnb

nb
nb

m¹
i�1

nb
nb pnb,i � αqnb,i

nb,i
nb,i pnb � αqnb

,

respectively, for all α P rα, αs, where 00 is
interpreted as 1, and x

0 is interpreted as
�8 for all positive x, and as 1 when x � 0.

Then xa,b is an increasing bijection, and
the graph of likga,b is the set

tpxa,bpαq, yapαq ybpαqq : α P rα, αsu .

If the NHC is learned from training data, then
for sufficiently large β P r0, 1r , the predictions
with cutoff point β correspond to the ones re-
turned by the NBC based on maximum likeli-
hood estimation (if this is well-defined). But as
β decreases, more and more classes are included
in the predictions with cutoff point β; and for
sufficiently small β, the predictions are vacu-
ous, in the sense that they consist of all possi-
ble classes. Hence, the NHC learned from train-
ing data can be interpreted as a description of
the uncertainty about the NBC based on max-
imum likelihood estimation: when the cutoff
point β P s0, 1r is fixed, the numbers of classes in
the predictions depend on the amount of uncer-
tainty (the more uncertainty, the more classes).
In particular, if c is the prediction of C returned
by the NBC, then βc � maxc1PCztcu likgc,c1 p1q is
the minimum value of β P s0, 1r such that the
prediction of C with cutoff point β returned by
the NHC is c as well. Therefore, βc is an in-
dex of the uncertainty about the prediction c:
the larger βc, the more uncertainty; in fact, βc
is the likelihood ratio test statistic for the set
of all parameters θ P ΘGN

such that the corre-
sponding NBC does not return c as prediction
of C: see for instance (Wilks, 1938).

The strict partial preference order ¡β for the
NHC with likelihood function lik on ΘGN

cor-
responds to credal dominance for the NCC with
as set Θ of parameters the likelihood-based con-
fidence region tθ P ΘGN

: likpθq ¡ βu. When
the NCC is learned from training data, the set Θ
of parameters is usually estimated on the basis
of the imprecise Dirichlet model: this model de-
pends on a hyperparameter s P s0,�8r , and the
behavior of the resulting predictions as s varies
from 0 to �8 is similar to the behavior as β
varies from 1 to 0 of the predictions with cut-
off point β returned by the NHC learned from
the same training data. Besides the theoreti-
cal advantages of not needing prior distributions
and of having the whole information encoded in
the model (whereas to each s P s0,�8r corre-
sponds a different NCC), the main practical ad-
vantage of the NHC over the NCC when they
are learned from training data is that, unlike
the hyperparameter s, the cutoff point β has a



frequentist interpretation in terms of (approxi-
mate) confidence levels, thanks to the result of
(Wilks, 1938), as shown in the next example. A
much more thorough comparison of these naive
classifiers will be presented in (Antonucci et al.,
2011).

Example 2. The simplest nontrivial classifica-
tion problem corresponds to the case with ΩC �
ta, bu and m � 0. Assume that P pC � aq � 1

2 ;
in this case, the vacuous prediction of C can be
considered as the theoretically correct classifica-
tion, since there is no reason for preferring either
of the two possible classes to the other. Con-
sider the NHC learned from a complete training
dataset consisting of n objects, and consider the
NCC learned from the same training data on the
basis of the imprecise Dirichlet model with the
standard choice s � 2 for the hyperparameter.
The probability that the prediction of C with
cutoff point β � 0.15 returned by the NHC is
vacuous is approximately 94.3% when n � 100
and 94.6% when n � 1000, while the proba-
bility that the prediction of C returned by the
NCC is vacuous is approximately 23.6% when
n � 100 and 7.6% when n � 1000. Hence, in
this perfectly symmetric situation the probabil-
ity that the NCC returns the vacuous prediction
(that is, the theoretically correct classification)
decreases as the number of objects in the train-
ing dataset increases.

5 Conclusion

When the likelihood function for the probabil-
ities of a Bayesian network factorizes in multi-
nomial likelihood functions, Theorem 1 gives a
method for calculating profile likelihood func-
tions for a particular class of probabilistic in-
ferences. In the future, this method will be
generalized to non-factorizing likelihood func-
tions and more general classes of probabilistic
inferences, by combining it with approximation
algorithms (such as the EM algorithm) and ex-
ploiting the algebraic structure of the likelihood
functions. Another interesting research topic
is the combination of these methods with the
learning of the graph of the Bayesian network.
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