
Sub-quadratic Markov tree mixture learning based on
randomizations of the Chow-Liu algorithm

Sourour Ammar and Philippe Leray
Knowledge and Decision Team

Laboratoire d’Informatique de Nantes Atlantique (LINA) UMR 6241
Ecole Polytechnique de l’Université de Nantes, France

sourour.ammar@univ-nantes.fr, philippe.leray@univ-nantes.fr

François Schnitzler and Louis Wehenkel
Department of EECS & GIGA-Research,

Grande Traverse, 10 - B-4000 Liège - Belgium
fschnitzler@ulg.ac.be, L.Wehenkel@ulg.ac.be

Abstract

The present work analyzes different randomized methods to learn Markov tree mixtures
for density estimation in very high-dimensional discrete spaces (very large number n of
discrete variables) when the sample size (N) is very small compared to n. Several sub-
quadratic relaxations of the Chow-Liu algorithm are proposed, weakening its search proce-
dure. We first study näıve randomizations and then gradually increase the deterministic
behavior of the algorithms by trying to focus on the most interesting edges, either by
retaining the best edges between models, or by inferring promising relationships between
variables. We compare these methods to totally random tree generation and randomiza-
tion based on bootstrap-resampling (bagging), of respectively linear and quadratic com-
plexity. Our results show that randomization becomes increasingly more interesting for
smaller N/n ratios, and that methods based on simultaneously discovering and exploiting
the problem structure are promising in this context.

1 Introduction

Directed probabilistic graphical models encode
a joint distribution over a set of variables by
a product of conditional probability distribu-
tions, one for each variable conditionally to its
parents in the directed graph. These models
may be learned from data and used to perform
probabilistic inferences over the encoded distri-
bution (Pearl, 1986). However, exact inference
and learning with such models are both NP-
hard, unless the skeleton of the graph is con-
strained (Cooper, 1990). Existing learning al-
gorithms are not scalable to high dimensional
spaces because of their excessive computational
complexity (Auvray and Wehenkel, 2002).

Markov Trees are an interesting subclass of
directed graphical models, whose skeletons are

acyclic and for which each node of the graph
has (at most) one parent. With Markov trees,
the computational complexity of probabilistic
inference and parameter learning are linear in
the number of variables (Pearl, 1986). Fur-
ther, Markov tree structures may be learned
efficiently by the Chow-Liu algorithm (Section
3.1), quadratic in the number of variables.

While Markov trees impose strong modeling
restrictions, mixtures of Markov trees can rep-
resent a much wider (actually unlimited) class
of probability densities than single Markov trees
while retaining their interesting computational
properties in terms of inference (Meila and Jor-
dan, 2000), making these models attractive for
scaling graphical models to high-dimensional
problems. As a matter of fact, these simple
graphical models were used for these reasons,

in order to build optimized mixtures of mod-
els for probability density estimation (Meila
and Jordan, 2000) by using an expectation-
minimization algorithm.

In supervised learning, a generic framework
which has led to many fruitful innovations is
called “Perturb and Combine”. Its main idea
is to on the one hand perturb in different ways
the optimization algorithm used to derive a pre-
dictor from a dataset and on the other hand to
combine in some appropriate fashion an ensem-
ble of predictors obtained by multiple iterations
of the so perturbed search algorithm. This ap-
proach may in particular lead to a strong re-
duction in variance (Breiman, 1996). It was
first explored for probability density estimation
in (Ammar et al., 2008) by comparing vari-
ous kinds of large ensembles of simple graphical
models in the form of Markov Trees.

The above mentioned algorithms for learn-
ing mixtures of Markov trees use the Chow-
Liu algorithm (Chow and Liu, 1968). However,
since this algorithm is quadratic in the num-
ber of variables, these methods do not scale
well to very high-dimensional problems, with
thousands or even millions of variables. Thus,
(Schnitzler et al., 2010; Ammar et al., 2010)
tried to investigate mixtures of models learned
by using various randomized versions of the
Chow-Liu algorithm, with the aim of reduc-
ing the computational complexity below the
quadratic level, and simultaneously improving
accuracy in small (i.e. realistic) sample size con-
ditions by variance reduction. The aim of the
present paper is to analyse these methods and
compare their results in the same framework.

The rest of the paper is organized as follows.
We describe tree models and models of mixtures
of trees more formally in section 2, and state in
section 3 the different tree mixture learning al-
gorithms that we want to analyse. We explain
and discuss our empirical evaluation of these al-
gorithms in section 4, before concluding.

2 Mixtures of Markov trees

Let X = {X1, . . . , Xn} be a finite set of dis-
crete random variables, and D = (x1, · · · , xN)

be a sample (we will use the term “dataset”
to denote it) of joint observations xi =
{xi1, · · · , xin} independently drawn from some
data-generating density PG(X1, . . . , Xn).

A mixture distribution PT̂ (X1, . . . , Xn) in-

duced by a multiset T̂ = {T1, . . . , Tm} of m
Markov trees is defined as a convex combina-
tion of elementary Markov tree densities, i.e.

PT̂ (X) =

m∑
i=1

µiPTi(X),

where µi ∈ [0, 1],
∑m

i=1 µi = 1, and PTi(X) is
the probability density over X encoded by the
graphical model composed of the Markov tree
structure Si and its parameter set θ̃i :

PTi(X) = PSi,θ̃i
(X) =

n∏
p=1

Pθ̃i(Xp|PaSi(Xp)),

where PaSi(Xp) is the parent variable of Xp in
the tree structure Si.

Several versions of Markov tree mixtures were
studied in (Ammar et al., 2009; Ammar et al.,
2008) as an alternative to classical methods
of density estimation in the context of high-
dimensional spaces and small datasets: mix-
tures of tree structures generated in a totally
randomized fashion with linear complexity in
the number of variables and ensembles of opti-
mal trees derived from bootstrap replicas of the
dataset by the Chow and Liu algorithm (Chow
and Liu, 1968) (i.e. bagging of Markov trees).

Other studies tried to relax the Chow-Liu al-
gorithm to reduce its computational complexity
while maintaining its accuracy (Schnitzler et al.,
2010; Ammar et al., 2010). In the present work
we analyze these methods in terms of computa-
tional complexity, accuracy, and running time,
within a same framework.

3 Panel of learning algorithms

Algorithm 1 describes our general methodology
to learn a mixture of m Markov trees from a
dataset D.

It may be declined by using different variants
of the three subroutines it uses, namely Build-
MarkovTreeStructure, LearnPars, and Comp-

Weights. In this paper we focus on the ef-
fect of varying only the first one, used to in-
fer the structures Si of the mixture terms.
Next, we describe the different versions of Build-
MarkovTreeStructure that we have considered
in our study. We start by describing the origi-
nal Chow-Liu method.

Algorithm 1 (Learning a Markov tree mixture).
1. Repeat for i = 1, · · · ,m:

(a) Si = BuildMarkovTreeStructure(D)

(b) θ̃i = LearnPars(Si, D)

2. (µ)mi=1 = CompWeights((Si, θ̃i)
m
i=1, D)

3. Return
(
µi, Si, θ̃i

)m

i=1

3.1 Chow-Liu algorithm

This algorithm learns a Markov tree structure
maximizing the likelihood of the training set
(Chow and Liu, 1968). Its principle is described
by Algorithm 2. It can be decomposed in two
steps : Step 1. computes from the dataset the
maximum likelihood estimates of the mutual in-
formations between each pair of variables to fill
an n × n symmetrical matrix (MI); Step 2.
searches for a maximum weight spanning tree
(MWST) in this matrix (e.g. Kruskal’s algo-
rithm (Cormen et al., 2001), used here).

Algorithm 2 (Chow-Liu algorithm).
1. MI = [0]n×n; Repeat for k = 1, · · · , n:

Repeat for j = k + 1, · · · , n:
i. MI[k, j] = CompMI(Xk, Xj , D);
ii. MI[j, k] =MI[k, j].

2. S = CompKruskal(MI); Return S.

The first step requires O(n2N) computations,
while the second has a complexity of E log(E)
with E the number of considered edges. In the
Chow-Liu algorithm E = n(n − 1)/2, so this
second complexity becomes O(n2 log(n2)).

3.2 Randomized edge sampling

To reduce the complexity of the Chow-Liu al-
gorithm, we propose to apply the Perturb and
Combine principle by learning each model from
an incomplete matrix MI.

The random edge sampling algorithm per-
forms this by randomly selecting a subset of a
priori fixed size K of different pairs of variables

according to a uniform distribution. These
terms are used to partially fill the matrix MI
used as input to the MWST algorithm. Algo-
rithm 3 describes this procedure.

Algorithm 3 (randomized edge sampling).
1. MI = [0]n×n ; Repeat for k = 1, · · · ,K:

(a) Draw new random pair (i1, i2) ∈ {1, . . . , n}2;
(b) MI[i1, i2] = CompMI(Xi1 , Xi2 , D);

(c) MI[i2, i1] =MI[i1, i2].

2. S = CompKruskal(MI); Return S.

The complexity of Algorithm 3 is loglinear
in the number K of edges drawn. Notice that
the tree structure that it infers may be discon-
nected, and that its dependence on the dataset
is increasing with the value of K. We will re-
port in this paper simulations and results for
two values of the parameter : K = n log(n)
considered in (Ammar et al., 2010), and K =
0.33n(n − 1)/2. The first value allows a to-
tal complexity of n log(n) log(n log(n)), which is
sub-quadratic and very close to the quasi-linear.
The second corresponds approximately to the
edges sampled by the method described in the
next section.

3.3 Randomized vertex clustering

Another idea to weaken the Chow and Liu pro-
cedure was proposed by (Schnitzler et al., 2010).
This method is a less näıve approach to sam-
pling the matrix MI, which targets potentially
interesting (i.e. of large weight) edges. Algo-
rithm 4 details this two-step process, that first
builds a local structure of the problem, and then
focuses on pairs of variables located close to
each other in that structure.

The first step consists in an approximate on-
line clustering of the variables based on their
mutual information, inspired by leader cluster-
ing (a cluster Cp is represented by its leader
Lp). As illustrated in figure 1, a sequence C of
clusters is created until all variables belong to
one. The construction of a cluster Cp is based
on two thresholds on mutual information: one
cluster-threshold (MIC) and one neighborhood-
threshold (MIN). The cluster is built by com-
paring the mutual information of each remain-
ing unclustered variable to the new leader (Lp,

(a) First a leader (here X5)
is chosen at random and
compared to all 12 other
variables.

(b) Next, the 1st cluster
is built. Here it is made
of 5 members and has one
neighbor.

(c) The 2nd leader (X13,
the farthest from X5) is
compared only to 7 vari-
ables.

(d) Final result, after 4 it-
erations. All edges con-
sidered are kept for the
MWST inference.

Figure 1: Illustration of the vertex clustering algorithm.

chosen first at random, then among unclustered
variables by minimizing

∑
q<pMI(Lp, Lq)). An

unclustered variable X is identified as:

1. member of Cp, if MI(X,Lp) > MIC ,

2. neighbor of Cp, if
MIC >MI(X,Lp) > MIN ,

3. not related to Cp, otherwise.

Setting those thresholds can be seen as ex-
cluding potentially independent variables. This
exclusion rate can be controlled, since the maxi-
mum likelihood estimate of the mutual informa-
tion for two independent variables asymptoti-
cally follows a χ2 law. In this work, its per-
centile 0.5 (respectively 5) was used for MIC
(MIN).

Algorithm 4 (Vertex Clustering).

1. V = X ; C = ∅; MI = [0]n×n; Repeat until V = ∅:

(a) L = GetNewLeader(V, C);

(b) C,MI +=MakeCluster(L,V,MIN ,MIC).

2. nbClusters = size(C);
Repeat for p = 1, · · · , nbClusters:

(a) Repeat for i1, i2 : Xi1 , Xi2 ∈ Cp:

i. MI[i1, i2] = CompMI(Xi1 , Xi2 , D);
ii. MI[i2, i1] =MI[i1, i2].

(b) Repeat ∀q < p : Cq ∈ Neibhors(Cp):

Repeat for i1, i2 : Xi1 ∈ Cp, Xi2 ∈ Cq:
A. MI[i1, i2] = CompMI(Xi1 , Xi2 , D);
B. MI[i2, i1] =MI[i1, i2].

3. S = CompKruskal(MI); Return S.

In the second step of the algorithm, the mu-
tual information of all potentially interesting
pairs (Xi, Xj) are computed and used as edge-
weights for the MWST algorithm. Interesting
pairs (a) are in the same cluster or (b) span
two neighboring clusters, i.e one variable of one

cluster is a neighbor of the other cluster. In ad-
dition, all edges evaluated during the clustering
process are used as candidate edges.

The complexity of this algorithm is between
linear and quadratic in the number of variables,
depending on the numerical values of MIC and
MIN and the problem structure.

3.4 Inertial search heuristic

This algorithm (Ammar et al., 2010) for com-
puting a sequence of sub-optimal MWST was
designed to improve the base method from sec-
tion 3.2. In this work we also apply it to the
vertex clustering algorithm (section 3.3).

The inertial method takes advantage of the
Markov tree structure Si−1 built in the previ-
ous iteration to partially fill the new MIi ma-
trix. The weights (recomputed in case boot-
strap copies of the dataset are used) of the edges
of the Markov tree built at the previous itera-
tion i− 1 are first written in the MIi matrix of
the current iteration i, and a new set of edges
generated by the base method (either at random
or by vertex clustering) is inserted afterwards.
This is described by Algorithm 5.

The complexity of this method is similar to
the base method.

Algorithm 5 (Inertial research procedure).
1. MIi = [0]n×n ;

Repeat for k = 1, · · · , nbEdges(Si−1):

(a) (i1, i2) = GetIndices(GetEdge(Si−1, k));
(b) MIi[i1, i2] = CompMI(Xi1 , Xi2 , D);
(c) MIi[i2, i1] =MIi[i1, i2].

2. Repeat for k = 1, · · · , nbEdges(BaseMethod):

(a) (i1, i2) = indices of edge k from BaseMethod;
(b) MIi[i1, i2] = CompMI(Xi1 , Xi2 , D);
(c) MIi[i2, i1] =MIi[i1, i2].

3. Si = CompKruskal(MIi); Return Si.

3.5 Other variants

Two other variants (baselines) were also consid-
ered, namely random trees and bagging.

The first one draws a tree structure totally at
random (i.e. independently from the dataset)
through the use of Prüfer lists. Complexity is
linear in n (Ammar et al., 2008).

Bagging can also be used to increase random-
ization in a given method, by supplying a boot-
strap replica of the original dataset to any tree-
structure learning algorithm. This may actually
be quite productive in order to randomize tree
structures (see the results below). However, as
far as accuracy is concerned, it turns out to be
preferable to use the full dataset for parame-
ter estimation of each Markov tree generated
by this method (Schnitzler et al., 2010).

4 Empirical simulations

We apply the algorithm variants described in
Section 3 to synthetic problems to assess their
performance. We carried out repetitive exper-
iments for different data-generating (or target)
densities as described in Section 4.1; our results
are reported in Section 4.2.

4.1 Experimental protocol

We present here results obtained on 10 differ-
ent target distributions over n = 1000 binary
variables, and we report them for mixtures and
datasets of various sizes.

Target density generation Target densities
are synthetic distribution factorizing according
to a general directed acyclic graph structure.
These models (structure and parameters) are
generated by the algorithm described in (Am-
mar et al., 2008).

Datasets We focus our analysis on rather
small datasets (N = 100, 250, 1000) with re-
spect to the number n = 1000 of variables.
This replicates the usual situation in high-
dimensional problems, which are the motivation
of this work. For each considered sample size
and for each target distribution, we generate 5
different datasets.

Mixture learning For a given dataset, and
for a given tree structure learning algorithm,
we apply the mixture learning algorithm (Algo
1) by generating ensemble models of growing
sizes (m = 1,m = 10, . . . ,m = 150) in order to
appraise the effect of the ensemble size on the
quality of the resulting model.

In all our simulations, the parameters of
the Markov tree models are learned from the
dataset by maximum a posteriori estimation us-
ing uniform Dirichlet priors.

In our empirical tests we have always
weighted the individual terms uniformly (i.e.
µ = 1/m in Algorithm 1).

Accuracy evaluation We assess the qual-
ity of each generated mixture by the Kullback-
Leibler divergence (Kullback and Leibler, 1951),
an asymmetric measure of similarity of a given
distribution PT̂ to a target distribution PG, de-
fined by

DKL(PG || PT̂) =
∑
X∈X

PG(X) log2

(
PG(X)

PT̂ (X)

)
.

Since screening all 21000 configurations of X
is not possible, we estimate this quantity by
Monte Carlo using a random sample of config-
urations generated according to PG:

D̂KL(PG || PT̂) =
∑
X∼PG

log2

(
PG(X)

PT̂ (X)

)
.

In this work, we generated for each data-
generating distribution and each learning algo-
rithm a fixed set of 50000 samples, which is then
used for the Monte Carlo estimation of DKL of
the models produced by the algorithm applied
to the datasets issued from this distribution and
with a growing number of mixture terms m.

4.2 Results and discussion

Table 1 describes the algorithm variants that
we have evaluated, recalls their computational
complexities, and also gives indications of their
relative computing times in our implementa-
tion. The performances of these algorithms in
terms of accuracy (DKL estimates) are reported
in Figures 2 and 3. As reference method we use
the Chow and Liu single tree method (denoted
by CL in the table and figures).

Table 1: In the names of the algorithms we study, D means no alteration to the dataset and B
the use of bootstrap replica. m,n,K stand for the number of terms in the mixture, of variables
and of sampled pairs of variables. U emphasizes the fact that we are using uniform weights in the
mixture. (CPU times are given for n = 1000 variables)

Name Tree generation Dataset Complexity running time (one tree)

MTU random D mn 0.0017

ESBU rand. Edge Samp. B mK log(K) 0.02
ESDU rand. Edge Samp. D mK log(K) 0.02
IESBU Inertial Edge Samp. B mK log(K) 0.02
IESDU Inertial Edge Samp. D mK log(K) 0.02
IESDU% Inertial Edge Samp. D (K = 165000) 0.72
VCDU Vert. Clust D up to mn2 log(n) 0.92
IVCDU Inertial Vert. Clust D up to mn2 log(n) 0.92

CL Chow-Liu D n2 log(n) 1
CLBU Chow-Liu B mn2 log(n) 1

0 50 100 150
5

10

15

20

25

30

35

40

45

50

55

Number of mixture components

K
L

 d
iv

er
ge

nc
e

(a) 1000 samples.

0 50 100 150
15

20

25

30

35

40

45

50

55

60

Number of mixture components

K
L

 d
iv

er
ge

nc
e

(b) 250 samples.

0 50 100 150
40

45

50

55

60

65

70

75

Number of mixture components

K
L

 d
iv

er
ge

nc
e

MTU
ESBU
ESDU
IESBU
IESDU
VCDU
IVCDU
CL
CLBU

(c) 100 samples.

Figure 2: Average performance of the algorithms described in Table 1 on 5 target distributions of
1000 variables times 10 datasets, with sample sizes decreasing.

Figures 2(a) and 3 display the resulting D̂KL

values for growing mixture sizes m on datasets
of 1000 samples. From Fig. 2(a) we observe
that vertex clustering (VCDU) seems far better
than random edge sampling (ESDU).

The comparison is however not fair, because
VCDU samples approximately 33% of all edges
at each iteration, and ESDU only 1.4%. To pro-
vide a more accurate comparison, the latter was
modified (ESDU%, in Figure 3 and Table 1) to
use the same number of edges than VCDU. The
results exposed in Figure 3 with this setting con-
firm that VCDU is also superior to ESDU%.

The inertial heuristic can be used to enhance
both methods (IESDU, IVCDU) with nearly no
additional complexity cost (see Table 1), leading
to an increase in the improvement rate with the
size of the model. Figures 2(a) and 2(b) show

that IVCDU converges to a model slightly bet-
ter than the CL tree (the best edges have been
found, so the optimal tree is always learned),
while the inertial randomized methods (IRB
and IRS) with a complexity close to quasi-linear
tend to approach CL when the number of mix-
ture components grows and surpasses IVCDU
which complexity is higher.

The same convergence can be observed for
IESDU% (IESDU on 33% of edges instead of
1.4%) in Fig. 3, which also converges to the CL
tree, albeit slower than IVCDU.

ESDU is degraded by the use of bagging
(ESBU), and both methods yield performance
only slightly better than random structures
(MTU). We therefore conjecture that the low
quality (as opposed to the low number) of edges
used in ESDU introduces too much randomiza-

0 50 100 150
0

10

20

30

40

50

60

Number of mixture components

K
L

 d
iv

er
ge

nc
e

ESBU
IESDU
IESBU
VCDU
IVCDU
ESBU%
IESDU%
IESBU%

Figure 3: A comparison between vertex cluster-
ing and random edge sampling methods, where
the latter are modified to use the same number
of edges than the first, shows that vertex clus-
tering is still clearly superior. (1000 samples)

tion to benefit from bagging. Indeed, when the
quality of the edges considered increases over
time (IESDU) bagging actually ameliorates the
method. This hints towards that considering
the use of bagging methods with CL trees or
with the inertial vertex clustering could proba-
bly be improved by computing the best edges
(i.e. significant on the original dataset) only
once instead of repeating it for every new tree.

Experiments performed on sample sets of size
250 and 100 are reported in Fig. 2(b) and 2(c).
Decreasing the number of samples from 1000 to
250 does not modify the results very much, as
illustrated in Fig. 2(b). The main difference lies
in the relative performance of all methods com-
pared to CL algorithm, which seem to improve
faster as m increases. This tends to indicate
that randomization is increasingly more benefi-
cial as the number of samples decreases.

The observation of the behavior of the bag-
ging methods in Figure 2 further confirms this
analysis. The gap between pairs of methods us-
ing the same algorithm on the original dataset
or on bootstrap replicas (CL - CLBU, ESDU
- ESBU, IESDU - IESBU) is widening when
the number of samples is decreasing. Bagging
of Chow-Liu trees (CLBU) is actually the best
method on all dataset sizes. However, using
bagging with inertial procedures and edge sam-

pling yields also impressive results: the curve
IESBU converges to CLBU in Fig. 2(c), while
the IESBU algorithm has a much lower com-
plexity than CLBU.

An alternative way to understand these re-
sults is in terms of over-fitting. From Fig. 2(c)
we can see that IVCDU first surpasses CL after
a few iterations, but the addition of subsequent
terms worsens the mixture, which converges to
the CL curve. Actually, at that point the model
has fully learned the optimal tree, and it is re-
peatedly added to the model. The rise of the
curve at that point signals the over-fitting. In
addition, we can notice that MTU, the method
using structures drawn independently from the
dataset behaves better than most other meth-
ods in this context.

Observing the first tree of each model in the
same figure, we can observe over-fitting again.
IESBU (and ESBU) is better than IESDU (and
ESDU). Likewise, the first term of CLBU is bet-
ter than CL. A tree structure learned on a per-
turbed dataset leads to a graphical model that
is more general.

This behavior is still present at 250 samples,
but is no longer noticeable at 1000 : IESBU
and IESDU start at the same point, and the
first bagged tree is worse than the optimal.

The application of BDeu weights (not re-
ported in this paper) to the methods presented
here leads to similar conclusions. But we found
out that many methods actually display worse
performances in terms of accuracy when com-
bined with such Bayesian weights. This is un-
derstandable, since weighting each structure by
its posterior probability makes sense for MTU
only, since asymptotically only in this con-
text the mixture will converge to a canonical
Bayesian method. The methods that benefit the
most from those ‘Bayesian’ weighting scheme
are IRSBU and IRSDU. The first terms (built
with few information) are gradually eliminated
in favor of those identified later on (where the
inertial procedure has iteratively improved the
quality of the edges).

5 Conclusions and future works

In this paper, we have compared several ran-
domization methods aiming to approximate the
Chow-Liu algorithm, with the objective of re-
ducing its computational complexity in the con-
text of learning mixtures of trees, and moti-
vated by the variance reduction potential of ran-
domization in the context of learning in high-
dimensional problems.

Based on our results on synthetic experi-
ments, we claim that, in real conditions, i.e.
when the number of samples is much smaller
than the number of variables, randomization is
interesting for probability density estimation in
the form of mixtures of Markov Trees. That
interest actually increases when the number of
samples goes down, or when the dimensionality
of the space is increasing.

In addition, we have shown that exploiting
the structure of the problem by focussing on
strong edges leads to methods able to com-
pete in terms of performance with more time-
consuming procedures like bagging.

We therefore plan to keep investigating this
approach. In particular, a candidate area for
improvement is the transmission of knowledge
between terms. Increasing the number of reused
edges might speed up the convergence. Another
direction of research would be the consideration
of continuous variables, and the consideration
of a priori known dependency/independency
structures for the given problem.

Acknowledgments

This work was supported by FRIA/FNRS Bel-
gium, Wallonie Bruxelles International, the
French ministry of foreign and European affairs,
the MESR in the framework of Hubert Curien
partnerships, the BioMaGNet IUAP network of
the Belgian Science Policy Office and the Pas-
cal2 NOE of the EC-FP7. The scientific respon-
sibility rests with the authors.

References

S. Ammar, Ph. Leray, B. Defourny, and L. We-
henkel. 2008. High-dimensional probability den-
sity estimation with randomized ensembles of
tree structured Bayesian networks. In Proceed-
ings of the fourth European Workshop on Proba-

bilistic Graphical Models (PGM’08), pages 9–16,
Hirtshals, Denmark.

S. Ammar, Ph. Leray, B. Defourny, and L. We-
henkel. 2009. Probability density estimation by
perturbing and combining tree structured Markov
networks. In Proceedings of the 10th Euro-
pean Conference on Symbolic and Quantitative
Approaches to Reasoning with Uncertainty (EC-
SQARU 2009), pages 156–167, Verona, Italy.

S. Ammar, Ph. Leray, and L. Wehenkel. 2010. Sub-
quadratic Markov tree mixture models for prob-
ability density estimation. In 19th International
Conference on Computational Statistics (COMP-
STAT 2010), pages 673–680, Paris, France.

V. Auvray and L. Wehenkel. 2002. On the con-
struction of the inclusion boundary neighbour-
hood for Markov equivalence classes of Bayesian
network structures. In Adnan Darwiche and Nir
Friedman, editors, Proceedings of the 18th Con-
ference on Uncertainty in Artificial Intelligence
(UAI-02), pages 26–35, S.F., Cal. Morgan Kauf-
mann Publishers.

L. Breiman. 1996. Arcing classifiers. Technical re-
port, Dept. of Statistics, University of California.

C.K. Chow and C. N. Liu. 1968. Approximating dis-
crete probability distributions with dependence
trees. IEEE Transactions on Information The-
ory, 14(3):462–467.

G.F. Cooper. 1990. The computational complex-
ity of probabilistic inference using bayesian belief
networks. Artificial Intelligence, 42(2-3):393–405,
March.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. 2001. Introduction to Algorithms, Sec-
ond Edition. MIT Press and McGraw-Hill.

S. Kullback and R. Leibler. 1951. On information
and sufficiency. Annals of Mathematical Statis-
tics, 22(1):79–86.

M. Meila and M. I. Jordan. 2000. Learning with
mixtures of trees. Journal of Machine Learning
Research, 1:1–48.

J. Pearl. 1986. Fusion, propagation, and structuring
in belief networks. Artificial Intelligence, 29:241–
288.

F. Schnitzler, Ph. Leray, and L. Wehenkel. 2010. To-
wards sub-quadratic learning of probability den-
sity models in the form of mixtures of trees. In
18th European Symposium on Artificial Neural
Networks, Computational Intelligence and Ma-
chine Learning (ESANN 2010), pages 219–224,
Bruges, Belgium.

